1
|
Feigl B, Lewis SJ, Burr LD, Schweitzer D, Gnyawali S, Vagenas D, Carter DD, Zele AJ. Efficacy of biologically-directed daylight therapy on sleep and circadian rhythm in Parkinson's disease: a randomised, double-blind, parallel-group, active-controlled, phase 2 clinical trial. EClinicalMedicine 2024; 69:102474. [PMID: 38361993 PMCID: PMC10867415 DOI: 10.1016/j.eclinm.2024.102474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
Background New non-pharmacological treatments for improving non-motor symptoms in Parkinson's disease (PD) are urgently needed. Previous light therapies for modifying sleep behaviour lacked standardised protocols and were not personalised for an individual patient chronotype. We aimed to assess the efficacy of a biologically-directed light therapy in PD that targets retinal inputs to the circadian system on sleep, as well as other non-motor and motor functions. Methods In this randomised, double-blind, parallel-group, active-controlled trial at the Queensland University of Technology, Australia, participants with mild to moderate PD were computer randomised (1:1) to receive one of two light therapies that had the same photometric luminance and visual appearance to allow blinding of investigators and participants to the intervention. One of these biologically-directed lights matched natural daylight (Day Mel), which is known to stimulate melanopsin cells. The light therapy of the other treatment arm of the study, specifically supplemented the stimulation of retinal melanopsin cells (Enhanced Mel), targeting deficits to the circadian system. Both lights were administered 30 min per day over 4-weeks and personalised to an individual patient's chronotype, while monitoring environmental light exposure with actigraphy. Co-primary endpoints were a change from baseline in mean sleep macrostructure (polysomnography, PSG) and an endocrine biomarker of circadian phase (dim light melatonin secretion onset, DLMO) at weeks 4 and 6. Participants data were analysed using an intention to treat principle. All endpoints were evaluated by applying a mixed model analysis. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12621000077864. Findings Between February 4, 2021 and August 8, 2022, 144 participants with PD were consecutively screened, 60 enrolled and randomly assigned to a light intervention. There was no significant difference in co-primary outcomes between randomised groups overall or at any individual timepoint during follow-up. The mean (95% CI) for PSG, N3% was 24.15 (19.82-28.48) for Day Mel (n = 23) and 19.34 (15.20-23.47) for the Enhanced Mel group (n = 25) in week 4 (p = 0.12); and 21.13 (16.99-25.28) for Day Mel (n = 26) and 18.48 (14.34-22.62) for the Enhanced Mel group (n = 25) in week 6, (p = 0.37). The mean (95% CI) DLMO (decimal time) was 19.82 (19.20-20.44) for Day Mel (n = 22) and 19.44 (18.85-20.04) for the Enhanced Mel group (n = 24) in week 4 (p = 0.38); and 19.90 (19.27-20.53) for Day Mel (n = 23) and 19.04 (18.44-19.64) for the Enhanced Mel group (n = 25) in week 6 (p = 0.05). However, both the controlled daylight (Day Mel) and the enhanced melanopsin (Enhanced Mel) interventions demonstrated significant improvement in primary PSG sleep macrostructure. The restorative deep sleep phase (PSG, N3) significantly improved at week 6 in both groups [model-based mean difference to baseline (95% CI): -3.87 (-6.91 to -0.83), p = 0.04]. There was a phase-advance in DLMO in both groups which did not reach statistical significance between groups at any time-point. There were no safety concerns or severe adverse events related to the intervention. Interpretation Both the controlled daylight and melanopsin booster light showed efficacy in improving measures of restorative deep sleep in people with mild to moderate PD. That there was no significant difference between the two intervention groups may be due to the early disease stage. The findings suggest that controlled indoor daylight that is personalised to the individuals' chronotype could be effective for improving sleep in early to moderate PD, and further studies evaluating controlled daylight interventions are now required utilising this standardised approach, including in advanced PD. Funding The Michael J Fox Foundation for Parkinson's Research, Shake IT Up Australia, National Health and Medical Research Council, and Australian Research Council.
Collapse
Affiliation(s)
- Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia
| | - Simon J.G. Lewis
- Brain and Mind Centre, The University of Sydney, New South Wales, 2006, Australia
| | - Lucy D. Burr
- Department of Respiratory and Sleep Medicine, Mater Health, South Brisbane, QLD, 4101, Australia
- Mater Research, University of Queensland, QLD, 4072, Australia
| | - Daniel Schweitzer
- Centre of Neurosciences, Mater Health, South Brisbane, QLD, 4101, Australia
- Wesley Hospital, Auchenflower, QLD, 4066, Australia
| | - Subodh Gnyawali
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Dimitrios Vagenas
- School of Public Health and Social Work, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Drew D. Carter
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| | - Andrew J. Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
| |
Collapse
|
2
|
Feigl B, Lewis SJG, Rawashdeh O. Targeting sleep and the circadian system as a novel treatment strategy for Parkinson's disease. J Neurol 2024; 271:1483-1491. [PMID: 37943299 PMCID: PMC10896880 DOI: 10.1007/s00415-023-12073-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023]
Abstract
There is a growing appreciation of the wide range of sleep-wake disturbances that occur frequently in Parkinson's disease. These are known to be associated with a range of motor and non-motor symptoms and significantly impact not only on the quality of life of the patient, but also on their bed partner. The underlying causes for fragmented sleep and daytime somnolence are no doubt multifactorial but there is clear evidence for circadian disruption in Parkinson's disease. This appears to be occurring not only as a result of the neuropathological changes that occur across a distributed neural network, but even down to the cellular level. Such observations indicate that circadian changes may in fact be a driver of neurodegeneration, as well as a cause for some of the sleep-wake symptoms observed in Parkinson's disease. Thus, efforts are now required to evaluate approaches including the prescription of precision medicine to modulate photoreceptor activation ratios that reflect daylight inputs to the circadian pacemaker, the use of small molecules to target clock genes, the manipulation of orexin pathways that could help restore the circadian system, to offer novel symptomatic and novel disease modifying strategies.
Collapse
Affiliation(s)
- Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, 4059, Australia
- Queensland Eye Institute, South Brisbane, QLD, 4101, Australia
| | - Simon J G Lewis
- Parkinson's Disease Research Clinic, Brain and Mind Centre, School of Medical Sciences, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Oliver Rawashdeh
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Willis GL, Armstrong SM. Fine-tuning the circadian system with light treatment for Parkinson's disease: an in-depth, critical review. Rev Neurosci 2024; 35:57-84. [PMID: 37609845 DOI: 10.1515/revneuro-2023-0026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/30/2023] [Indexed: 08/24/2023]
Abstract
Late in the twentieth century, interest intensified regarding the involvement of the circadian system in the aetiology and treatment of Parkinson's disease (PD). It has been envisaged that this approach might provide relief beyond the limited benefits and severe side effects achieved by dopamine (DA) replacement. In the first clinical article, published in 1996, polychromatic light was used to shift the circadian clock as it is considered to be the most powerful zeitgeber (time keeper) that can be implemented to realign circadian phase. Since that time, 11 additional articles have implemented light treatment (LT) in various forms as an adjuvant to DA replacement. In spite of the growing interest in this area, the systematic exploration of LT in PD has been stymied by several methodological factors. Such factors include time of LT presentation, duration of studies undertaken, frequency of light employed, dose of light prescribed and relevance of experimental design to the prolonged course of the illness. On this basis, it is the purpose of this review to provide an in-depth examination of these papers, and the underlying preclinical work, to provide critique, thereby giving direction for future studies in therapeutic applications of LT for PD. Consideration of this collective work may serve to carve a path for future research and thereby improve the lives of those suffering from this debilitating disorder.
Collapse
Affiliation(s)
- Gregory L Willis
- The Bronowski Institute of Behavioural Neuroscience, 40 Davy Street, Woodend, VIC 3442, Australia
| | - Stuart M Armstrong
- The Bronowski Institute of Behavioural Neuroscience, 40 Davy Street, Woodend, VIC 3442, Australia
| |
Collapse
|
4
|
Carlisle TC, Medina LD, Holden SK. Original research: initial development of a pragmatic tool to estimate cognitive decline risk focusing on potentially modifiable factors in Parkinson's disease. Front Neurosci 2023; 17:1278817. [PMID: 37942138 PMCID: PMC10628974 DOI: 10.3389/fnins.2023.1278817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/03/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Cognitive decline is common in Parkinson's disease (PD). Calculating personalized risk of cognitive decline in PD would allow for appropriate counseling, early intervention with available treatments, and inclusion in disease-modifying trials. Methods Data were from the Parkinson's Progression Markers Initiative de novo cohort. Baseline scores were calculated for Lifestyle for Brain Health (LIBRA) and the Montreal Parkinson Risk of Dementia Scale (MoPaRDS) per prior literature and preliminary Parkinson's disease Risk Estimator for Decline In Cognition Tool (pPREDICT) by attributing a point for fourteen posited risk factors. Baseline and 5-year follow-up composite cognitive scores (CCSs) were calculated from a neuropsychological battery and used to define cognitive decliners (PD-decline) versus maintainers (PD-maintain). Results The PD-decline group (n = 44) had higher LIBRA (6.76 ± 0.57, p < 0.05), MoPaRDS (2.45 ± 1.41, p < 0.05) and pPREDICT (4.52 ± 1.66, p < 0.05) scores compared to the PD-maintain group (n = 263; LIBRA 4.98 ± 0.20, MoPaRDS 1.68 ± 1.16, pPREDICT 3.38 ± 1.69). Area-under-the-curve (AUC) for LIBRA was 0.64 (95% confidence interval [CI], 0.55-0.73), MoPaRDS was 0.66 (95% CI, 0.58-0.75) and for pPREDICT was 0.68 (95% CI, 0.61-0.76). In linear regression analyses, LIBRA (p < 0.05), MoPaRDS (p < 0.05) and pPREDICT (p < 0.05) predicted change in CCS. Only age stratified by sex (p < 0.05) contributed significantly to the model for LIBRA. Age and presence of hallucinations (p < 0.05) contributed significantly to the model for MoPaRDS. Male sex, older age, excessive daytime sleepiness, and moderate-severe motor symptoms (all p < 0.05) contributed significantly to the model for pPREDICT. Conclusion Although MoPaRDS is a PD-specific tool for predicting cognitive decline relying on only clinical features, it does not focus on potentially modifiable risk factors. LIBRA does focus on potentially modifiable risk factors and is associated with prediction of all-cause dementia in some populations, but pPREDICT potentially demonstrates improved performance in cognitive decline risk calculation in individuals with PD and may identify actionable risk factors. As pPREDICT incorporates multiple potentially modifiable risk factors that can be obtained easily in the clinical setting, it is a first step in developing an easily assessable tool for a personalized approach to reduce dementia risk in people with PD.
Collapse
Affiliation(s)
- Tara C. Carlisle
- Department of Neurology, Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, Aurora, CO, United States
- University of Colorado Movement Disorders Center, Aurora, CO, United States
| | - Luis D. Medina
- Department of Psychology, University of Houston, Houston, TX, United States
| | - Samantha K. Holden
- Department of Neurology, Behavioral Neurology Section, University of Colorado School of Medicine, Aurora, CO, United States
- University of Colorado Alzheimer’s and Cognition Center, Aurora, CO, United States
- University of Colorado Movement Disorders Center, Aurora, CO, United States
- Department of Neurology, Movement Disorders Section, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
5
|
Meesters Y, van Tuinen EJD, Gordijn MCM. 35 years of light treatment for mental disorders in the Netherlands. Ann Med 2023; 55:2269574. [PMID: 37857364 PMCID: PMC10588530 DOI: 10.1080/07853890.2023.2269574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Light therapy (LT) for Seasonal Affective Disorders (SAD) has been a well-known and effective treatment for 40 years. The psychiatric university clinic of Groningen, the Netherlands was an early adopter and started research and treatment of SAD in 1987. Research projects on mechanisms, the role of the circadian system, treatment optimization, and investigating new areas for the effects of light treatment have been carried out ever since, leading to a widespread interest across the country. OBJECTIVE To provide an overview and description of the historical development of LT for mental disorders in the Netherlands. METHODS A non-systematic, review of research on light treatment for mental problems in the Netherlands, published since 1987 was conducted. RESULTS The fields of LT and chronotherapy are strongly based in the scientific interests of both chrono-biologists and therapists in the Netherlands. LT has shown effectiveness in treating mood disorders. Likewise, results for other mental disorders have shown some promise, but so far, the outcomes are not always unequivocal and have not always been based on robust data. Ongoing research is discussed. CONCLUSIONS LT, and in addition exposure to the right light at the right time is an important issue in mental health. Over the past 3 decades research on light and LT in the Netherlands has become well established and is still growing.
Collapse
Affiliation(s)
- Y. Meesters
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - E. J. D. van Tuinen
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - M. C. M. Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, the Netherlands
- Chrono@Work, Groningen, the Netherlands
| |
Collapse
|
6
|
Angelopoulou E, Stanitsa E, Karpodini CC, Bougea A, Kontaxopoulou D, Fragkiadaki S, Koros C, Georgakopoulou VE, Fotakopoulos G, Koutedakis Y, Piperi C, Papageorgiou SG. Pharmacological and Non-Pharmacological Treatments for Depression in Parkinson's Disease: An Updated Review. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1454. [PMID: 37629744 PMCID: PMC10456434 DOI: 10.3390/medicina59081454] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Depression represents one of the most common non-motor disorders in Parkinson's disease (PD) and it has been related to worse life quality, higher levels of disability, and cognitive impairment, thereby majorly affecting not only the patients but also their caregivers. Available pharmacological therapeutic options for depression in PD mainly include selective serotonin reuptake inhibitors, serotonin and norepinephrine reuptake inhibitors, and tricyclic antidepressants; meanwhile, agents acting on dopaminergic pathways used for motor symptoms, such as levodopa, dopaminergic agonists, and monoamine oxidase B (MAO-B) inhibitors, may also provide beneficial antidepressant effects. Recently, there is a growing interest in non-pharmacological interventions, including cognitive behavioral therapy; physical exercise, including dance and mind-body exercises, such as yoga, tai chi, and qigong; acupuncture; therapeutic massage; music therapy; active therapy; repetitive transcranial magnetic stimulation (rTMS); and electroconvulsive therapy (ECT) for refractory cases. However, the optimal treatment approach for PD depression is uncertain, its management may be challenging, and definite guidelines are also lacking. It is still unclear which of these interventions is the most appropriate and for which PD stage under which circumstances. Herein, we aim to provide an updated comprehensive review of both pharmacological and non-pharmacological treatments for depression in PD, focusing on recent clinical trials, systematic reviews, and meta-analyses. Finally, we discuss the pharmacological agents that are currently under investigation at a clinical level, as well as future approaches based on the pathophysiological mechanisms underlying the onset of depression in PD.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelia Stanitsa
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Claire Chrysanthi Karpodini
- Sport and Physical Activity Research Centre, Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Anastasia Bougea
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Dionysia Kontaxopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Stella Fragkiadaki
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | - Christos Koros
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| | | | - George Fotakopoulos
- Department of Neurosurgery, General University Hospital of Larissa, 41221 Larissa, Greece;
| | - Yiannis Koutedakis
- Functional Architecture of Mammals in Their Environment Laboratory, Department of Physical Education and Sport Science, University of Thessaly, 38221 Volos, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Sokratis G. Papageorgiou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.S.); (A.B.); (D.K.); (S.F.); (C.K.)
| |
Collapse
|
7
|
Kosanovic Rajacic B, Sagud M, Pivac N, Begic D. Illuminating the way: the role of bright light therapy in the treatment of depression. Expert Rev Neurother 2023; 23:1157-1171. [PMID: 37882458 DOI: 10.1080/14737175.2023.2273396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/17/2023] [Indexed: 10/27/2023]
Abstract
INTRODUCTION Despite the growing number of different therapeutic options, treatment of depression is still a challenge. A broader perspective reveals the benefits of bright light therapy (BLT). It stimulates intrinsically photosensitive retinal ganglion cells, which induces a complex cascade of events, including alterations in melatonergic, neurotrophic, GABAergic, glutamatergic, noradrenergic, serotonergic systems, and HPA axis, suggesting that BLT effects expand beyond the circadian pacemaker. AREAS COVERED In this review, the authors present and discuss recent data of BLT in major depressive disorder, non-seasonal depression, bipolar depression or depressive phase of bipolar disorder, and seasonal affective disorder, as well as in treatment-resistant depression (TRD). The authors further highlight BLT effects in various depressive disorders compared to placebo and report data from several studies suggesting a response to BLT in TRD. Also, the authors report data showing that BLT can be used both as a monotherapy or in combination with other pharmacological treatments. EXPERT OPINION BLT is an easy-to-use and low-budget therapy with good tolerability. Future studies should focus on clinical and biological predictors of response to BLT, on defining specific populations which may benefit from BLT and establishing treatment protocols regarding timing, frequency, and duration of BLT.
Collapse
Affiliation(s)
- Biljana Kosanovic Rajacic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marina Sagud
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| | - Nela Pivac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Ruder Boskovic Institute, Zagreb, Croatia
- University of Applied Sciences Hrvatsko Zagorje Krapina, Croatian Zagorje Polytechnic Krapina, Krapina, Croatia
| | - Drazen Begic
- Department for Psychiatry and Psychological Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
- School of Medicine University of Zagreb, Zagreb, Croatia
| |
Collapse
|
8
|
Asadpoordezaki Z, Coogan AN, Henley BM. Chronobiology of Parkinson's disease: Past, present and future. Eur J Neurosci 2023; 57:178-200. [PMID: 36342744 PMCID: PMC10099399 DOI: 10.1111/ejn.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder predominately affecting midbrain dopaminergic neurons that results in a broad range of motor and non-motor symptoms. Sleep complaints are among the most common non-motor symptoms, even in the prodromal period. Sleep alterations in Parkinson's disease patients may be associated with dysregulation of circadian rhythms, intrinsic 24-h cycles that control essential physiological functions, or with side effects from levodopa medication and physical and mental health challenges. The impact of circadian dysregulation on sleep disturbances in Parkinson's disease is not fully understood; as such, we review the systems, cellular and molecular mechanisms that may underlie circadian perturbations in Parkinson's disease. We also discuss the potential benefits of chronobiology-based personalized medicine in the management of Parkinson's disease both in terms of behavioural and pharmacological interventions. We propose that a fuller understanding of circadian clock function may shed important new light on the aetiology and symptomatology of the disease and may allow for improvements in the quality of life for the millions of people with Parkinson's disease.
Collapse
Affiliation(s)
- Ziba Asadpoordezaki
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Andrew N Coogan
- Department of Psychology, Maynooth University, Maynooth, Co Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| | - Beverley M Henley
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co Kildare, Ireland
| |
Collapse
|
9
|
Wang Y, Sun X, Li F, Li Q, Jin Y. Efficacy of non-pharmacological interventions for depression in individuals with Parkinson's disease: A systematic review and network meta-analysis. Front Aging Neurosci 2022; 14:1050715. [PMID: 36438007 PMCID: PMC9691406 DOI: 10.3389/fnagi.2022.1050715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Depression in Parkinson's disease (PD) is a major health concern worldwide. Recently, an increasing number of non-pharmacological interventions have been used in PD to alleviate depressive symptoms. However, it is uncertain which intervention is the best, and related evidence is limited. This network meta-analysis was performed to compare and rank non-pharmacological interventions for PD and analyze their effects on depression to provide evidence for clinicians to choose appropriate non-pharmacological management options. METHODS The PubMed, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), PsycINFO, China National Knowledge Infrastructure (CNKI), and Wanfang databases were searched from inception to April 7, 2022. Two authors screened all studies, extracted the data, and evaluated the methodological quality. STATA software version 16.0 was used to conduct the network meta-analysis. RESULTS Our network meta-analysis included 62 studies involving 3,050 participants and 35 non-pharmacological interventions. Although most non-pharmacological interventions showed non-significant effects, the surface under the cumulative ranking curve (SUCRA) values indicated that the best non-pharmacological intervention for depression was dance (82.3%), followed by LSVT-BIG therapy (77.4%), and CBT (73.6%). CONCLUSION Dance can be considered as an effective therapy for improving depression in patients with PD. In the future, more strictly designed trials are needed to verify the conclusions of this network meta-analysis.
Collapse
Affiliation(s)
- Yuxin Wang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xue Sun
- Nursing Department, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Fei Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Qi Li
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Jin
- Department of Nursing, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|