1
|
Enrique SL, Ricardo A, Concepción A. Antioxidant and Emulsifying Activity of the Exopolymer Produced by Bacillus licheniformis. Int J Mol Sci 2024; 25:8249. [PMID: 39125818 PMCID: PMC11312135 DOI: 10.3390/ijms25158249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
The exopolymer (ESPp) was obtained from Bacillus licheniformis IDN-EC, composed of a polyglutamic acid and polyglycerol phosphate chain O-substituted with αGal moieties (αGal/αGlcNH2 3:1 molar ratio) and with a 5000 Da molecular weight. The cytotoxicity activity of EPSp was determined by reducing the MTT (3-[4,5-dimethyl-thiazol-2-yl]-2,5-diphenyltetrazolium bromide) to formazan on HeLa cells. This EPS did not show cytotoxicity against the tested cell line. The ESPp presented great advantages as an antioxidant with free radical scavenging activities (1,1-diphenyl-2-picryl-hydrazyl radical (DPPH),hydroxyl radical (OH), and superoxide anion (O2-)) (65 ± 1.2%, 98.7 ± 1.9%, and 97 ± 1.7%), respectively. Moreover, EPSp increased the enzyme activity for catalase (CAT) and glutathione peroxidase (GSH-Px) in HeLa cells (CAT, 2.6 ± 0.24 U/mL; and GSH-Px, 0.75 ± 0.3 U/L). The presence of ESPp showed a significant protective effect against H2O2 in the cell line studied, showing great viability (91.8 ± 2.8, 89.9 ± 2.9, and 93.5 ± 3.6%). The EPSp presented good emulsifying activity, only for vegetable oils, olive oil (50 ± 2.1%) and sesame (72 ± 3%). Sesame was effective compared to commercials products, Triton X-100 (52.38 ± 1.6%), Tween 20 (14.29 ± 1.1%), and sodium dodecyl sulphate (SDS) (52.63 ± 1.6%). Furthermore, the EPS produced at 0.6 M has potential for environmental applications, such as the removal of hazardous materials by emulsification whilst resulting in positive health effects such as antioxidant activity and non-toxicity. EPSp is presented as a good exopolysaccharide for various applications.
Collapse
Affiliation(s)
- Sánchez-León Enrique
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
| | - Amils Ricardo
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Abrusci Concepción
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, UAM, Cantoblanco, 28049 Madrid, Spain
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| |
Collapse
|
2
|
Zarour K, Zeid AF, Mohedano ML, Prieto A, Kihal M, López P. Leuconostoc mesenteroides and Liquorilactobacillus mali strains, isolated from Algerian food products, are producers of the postbiotic compounds dextran, oligosaccharides and mannitol. World J Microbiol Biotechnol 2024; 40:114. [PMID: 38418710 PMCID: PMC10901973 DOI: 10.1007/s11274-024-03913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
Six lactic acid bacteria (LAB) isolated from Algerian sheep's milk, traditional butter, date palm sap and barley, which produce dextran, mannitol, oligosaccharides and vitamin B2 have been characterized. They were identified as Leuconostoc mesenteroides (A4X, Z36P, B12 and O9) and Liquorilactobacillus mali (BR201 and FR123). Their exopolysaccharides synthesized from sucrose by dextransucrase (Dsr) were characterized as dextrans with (1,6)-D-glucopyranose units in the main backbone and branched at positions O-4, O-2 and/or O-3, with D-glucopyranose units in the side chain. A4X was the best dextran producer (4.5 g/L), while the other strains synthesized 2.1-2.7 g/L. Zymograms revealed that L. mali strains have a single Dsr with a molecular weight (Mw) of ~ 145 kDa, while the Lc. mesenteroides possess one or two enzymes with 170-211 kDa Mw. As far as we know, this is the first detection of L. mali Dsr. Analysis of metabolic fluxes from sucrose revealed that the six LAB produced mannitol (~ 12 g/L). The co-addition of maltose-sucrose resulted in the production of panose (up to 37.53 mM), an oligosaccharide known for its prebiotic effect. A4X, Z36P and B12 showed dextranase hydrolytic enzymatic activity and were able to produce another trisaccharide, maltotriose, which is the first instance of a dextranase activity encoded by Lc. mesenteroides strains. Furthermore, B12 and O9 grew in the absence of riboflavin (vitamin B2) and synthesized this vitamin, in a defined medium at the level of ~ 220 μg/L. Therefore, these LAB, especially Lc. mesenteroides B12, are good candidates for the development of new fermented food biofortified with functional compounds.
Collapse
Affiliation(s)
- Kenza Zarour
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Ahmed Fouad Zeid
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Mari Luz Mohedano
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Alicia Prieto
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain
| | - Mebrouk Kihal
- Laboratoire de Microbiologie Appliquée, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es Senia, 31100, Oran, Algeria
| | - Paloma López
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas Margarita Salas (CIB, CSIC), 28040, Madrid, Spain.
| |
Collapse
|
3
|
Ponzio A, Rebecchi A, Zivoli R, Morelli L. Reuterin, Phenyllactic Acid, and Exopolysaccharides as Main Antifungal Molecules Produced by Lactic Acid Bacteria: A Scoping Review. Foods 2024; 13:752. [PMID: 38472865 DOI: 10.3390/foods13050752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
The primary goal of this scoping review is to collect, analyze, and critically describe information regarding the role of the main compounds (reuterin, phenyllactic acid, and exopolysaccharides) produced by LAB that possess antifungal properties and provide some suggestions for further research. The use of lactic acid bacteria (LAB) to mitigate spoilage and extend the shelf life of foodstuffs has a long history. Recently, there has been a growing interest in the unique properties of these additions to the foodstuffs in which they are applied. In recent studies regarding biopreservation, significant attention has been given to the role of these microorganisms and their metabolites. This fascinating recent discipline aims not only to replace traditional preservation systems, but also to improve the overall quality of the final product. The biologically active by-products produced by lactic acid bacteria are synthesized under certain conditions (time, temperature, aerobiosis, acidity, water activity, etc.), which can be enacted through one of the oldest approaches to food processing: fermentation (commonly used in the dairy and bakery sectors). This study also delves into the biosynthetic pathways through which they are synthesized, with a particular emphasis on what is known about the mechanisms of action against molds in relation to the type of food.
Collapse
Affiliation(s)
- Andrea Ponzio
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Annalisa Rebecchi
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Rosanna Zivoli
- Soremartec Italia S.r.l. (Ferrero Group), P.le P. Ferrero 1, 12051 Alba, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Faculty of Agriculture, Food and Environmental Sciences, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| |
Collapse
|
4
|
Zhang K, Liu S, Liang S, Xiang F, Wang X, Lian H, Li B, Liu F. Exopolysaccharides of lactic acid bacteria: Structure, biological activity, structure-activity relationship, and application in the food industry: A review. Int J Biol Macromol 2024; 257:128733. [PMID: 38092118 DOI: 10.1016/j.ijbiomac.2023.128733] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/02/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Over the past few decades, researchers have discovered that probiotics play an important role in our daily lives. With the further deepening of research, more and more evidence show that bacterial metabolites have an important role in food and human health, which opens up a new direction for the research of lactic acid bacteria (LAB) in the food and pharmaceutical industry. Many LAB have been widely studied because of the ability of exopolysaccharides (EPS). Lactic acid bacteria exopolysaccharides (LAB EPS) not only have great potential in the treatment of human diseases but also can become natural ingredients in the food industry to provide special qualitative structure and flavor. This paper has organized and summarized the biosynthesis, strain selection, production process parameters, structure, and biological activity of LAB EPS, filling in the monotony and incompleteness of previous articles' descriptions of LAB EPS. Therefore, this paper focuses on the general biosynthetic pathway, structural characterization, structure-activity relationship, biological activity of LAB EPS, and their application in the food industry, which will help to deepen people's understanding of LAB EPS and develop new active drugs from LAB EPS. Although the research results are relatively affluent, the low yield, complex structure, and few clinical trials of EPS are still the reasons that hinder its development. Therefore, future knowledge expansion should focus on the regulation of structure, physicochemical properties, function, higher production of EPS, and clinical trial applications, which can further increase the commercial significance and value of EPS. Furthermore, better understanding the structure-function relationship of EPS in food remains a challenge to date.
Collapse
Affiliation(s)
- Kangyong Zhang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Sibo Liu
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Shengnan Liang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Fangqin Xiang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Xiaodong Wang
- Food College, Northeast Agricultural University, Harbin 150030, China
| | - Huiqiang Lian
- Guangdong Jinhaikang Medical Nutrition Co., Ltd, Meizhou, China
| | - Bailiang Li
- Food College, Northeast Agricultural University, Harbin 150030, China.
| | - Fei Liu
- Food College, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Jaswal AS, Elangovan R, Mishra S. Synthesis and molecular characterization of levan produced by immobilized Microbacterium paraoxydans. J Biotechnol 2023; 373:63-72. [PMID: 37451319 DOI: 10.1016/j.jbiotec.2023.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
In this study, we report high molecular weight (HMW) levan production by whole cells of Microbacterium paraoxydans, previously reported to be a good producer of fructooligosaccharides. Structural analysis of the extracellularly produced fructan indicated the glycosidic bonds between the adjacent fructose to be of β-(2, 6) linkage with over 90% of the fructan to have molecular weight around 2 × 108 Da and 10% with a molecular weight of ∼20 kDa. Immobilization of the cells in Ca-alginate led to the production of 44.6 g/L levan with a yield of 0.29 g/g sucrose consumed. Factors affecting the conversion rate were identified by One-Factor-At-a-Time (OFAT) analysis and the combination of these (initial sucrose concentration of 400 g/L, 100 mM buffer pH 7, the temperature of 37 °C and 20 mM CaCl2) led to the production of ∼129 g/L of levan with a yield of ∼0.41 g/g sucrose consumed and volumetric productivity of 1.8 g/L/h.
Collapse
Affiliation(s)
- Avijeet Singh Jaswal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Ravikrishnan Elangovan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz-Khas, New-Delhi 110016, India.
| |
Collapse
|
6
|
Zhang J, Xiao Y, Wang H, Zhang H, Chen W, Lu W. Lactic acid bacteria-derived exopolysaccharide: Formation, immunomodulatory ability, health effects, and structure-function relationship. Microbiol Res 2023; 274:127432. [PMID: 37320895 DOI: 10.1016/j.micres.2023.127432] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Exopolysaccharides (EPSs) synthesized by lactic acid bacteria (LAB) have implications for host health and act as food ingredients. Due to the variability of LAB-EPS (lactic acid bacteria-derived exopolysaccharide) gene clusters, especially the glycosyltransferase genes that determine monosaccharide composition, the structure of EPS is very rich. EPSs are synthesized by LAB through the extracellular synthesis pathway and the Wzx/Wzy-dependent pathway. LAB-EPS has a strong immunomodulatory ability. The EPSs produced by different genera of LAB, especially Lactobacillus, Leuconostoc, and Streptococcus, have different immunomodulatory abilities because of their specific structures. LAB-EPS possesses other health effects, including antitumor, antioxidant, intestinal barrier repair, antimicrobial, antiviral, and cholesterol-lowering activities. The bioactivities of LAB-EPS are tightly related to their structures such us monosaccharide composition, glycosidic bonds, and molecular weight (MW). For the excellent physicochemical property, LAB-EPS acts as product improvers in dairy, bakery food, and meat in terms of stability, emulsification, thickening, and gelling. We systematically summarize the detailed process of EPS from synthesis to application, with emphasis on physiological mechanisms of EPS, and specific structure-function relationship, which provides theoretical support for the potential commercial value in the pharmaceutical, chemical, food, and cosmetic industries.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yue Xiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
7
|
Korsa G, Konwarh R, Masi C, Ayele A, Haile S. Microbial cellulase production and its potential application for textile industries. ANN MICROBIOL 2023; 73:13. [DOI: 10.1186/s13213-023-01715-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 03/22/2023] [Indexed: 09/03/2023] Open
Abstract
Abstract
Purpose
The textile industry’s previous chemical use resulted in thousands of practical particulate emissions, such as machine component damage and drainage system blockage, both of which have practical implications. Enzyme-based textile processing is cost-effective, environmentally friendly, non-hazardous, and water-saving. The purpose of this review is to give evidence on the potential activity of microbial cellulase in the textile industry, which is mostly confined to the realm of research.
Methods
This review was progressive by considering peer-reviewed papers linked to microbial cellulase production, and its prospective application for textile industries was appraised and produced to develop this assessment. Articles were divided into two categories based on the results of trustworthy educational journals: methods used to produce the diversity of microorganisms through fermentation processes and such approaches used to produce the diversity of microbes through microbial fermentation. Submerged fermentation (SMF) and solid-state fermentation (SSF) techniques are currently being used to meet industrial demand for microbial cellulase production in the bio textile industry.
Results
Microbial cellulase is vital for increasing day to day due to its no side effect on the environment and human health becoming increasingly important. In conventional textile processing, the gray cloth was subjected to a series of chemical treatments that involved breaking the dye molecule’s amino group with Cl − , which started and accelerated dye(-resistant) bond cracking. A cellulase enzyme is primarily derived from a variety of microbial species found in various ecological settings as a biotextile/bio-based product technology for future needs in industrial applications.
Conclusion
Cellulase has been produced for its advantages in cellulose-based textiles, as well as for quality enhancement and fabric maintenance over traditional approaches. Cellulase’s role in the industry was microbial fermentation processes in textile processing which was chosen as an appropriate and environmentally sound solution for a long and healthy lifestyle.
Collapse
|
8
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
9
|
The Profile of Exopolysaccharides Produced by Various Lactobacillus Species from Silage during Not-Fat Milk Fermentation. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
The exopolysaccharides (EPS) produced by lactic acid bacteria (LAB) and released into fermented milk play a protective role from stress factors as well as improve emulsifying and thickening properties of the product, reduce syneresis, and increase elasticity. Here we report the relationship between the properties, composition, and microstructure of EPS produced by six different strains of lactobacilli (L. bulgaricus and five strains isolated from silage). The presence of fructose together with negative-charged uronic acid was found to play a significant role in changing the EPS properties. Thus, the increased fraction of rhamnose and arabinose and a decrease in xylose leads to compaction of the EPS, decreased porosity and increased both OH- and superoxide scavenging and Fe-chelating activities. By contrast, increased xylose and low rhamnose and arabinose apparently leads to loss of large aggregates and high DPPH activity and FRAP. The high content of glucose, however, provides the formation of large pores. The increased fructan fraction (69.9 mol%) with a high fraction of galacturonic (18.2 mol%) and glucuronic acids (6.7 mol%) apparently determines the highly porous spongy-folded EPS microstructure. Taken together, our results indicate that both the quantitative characteristics of the individual components of the fraction and the structural features of EPS are important for the antioxidant potential of fermented milk and depend on the strain used for milk fermentation, suggesting the advantage of a multicomponent starter to achieve the optimal beneficial properties of fermented milk.
Collapse
|
10
|
Microorganisms-An Effective Tool to Intensify the Utilization of Sulforaphane. Foods 2022; 11:foods11233775. [PMID: 36496582 PMCID: PMC9737538 DOI: 10.3390/foods11233775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Sulforaphane (SFN) was generated by the hydrolysis of glucoraphanin under the action of myrosinase. However, due to the instability of SFN, the bioavailability of SFN was limited. Meanwhile, the gut flora obtained the ability to synthesize myrosinase and glucoraphanin, which could be converted into SFN in the intestine. However, the ability of microorganisms to synthesize myrosinase in the gut was limited. Therefore, microorganisms with myrosinase synthesis ability need to be supplemented. With the development of research, microorganisms with high levels of myrosinase synthesis could be obtained by artificial selection and gene modification. Researchers found the SFN production rate of the transformed microorganisms could be significantly improved. However, despite applying transformation technology and regulating nutrients to microorganisms, it still could not provide the best efficiency during generating SFN and could not accomplish colonization in the intestine. Due to the great effect of microencapsulation on improving the colonization ability of microorganisms, microencapsulation is currently an important way to deliver microorganisms into the gut. This article mainly analyzed the possibility of obtaining SFN-producing microorganisms through gene modification and delivering them to the gut via microencapsulation to improve the utilization rate of SFN. It could provide a theoretical basis for expanding the application scope of SFN.
Collapse
|
11
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Brabazon D, Loscher C, Freeland B. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients 2022; 14:2938. [PMID: 35889895 PMCID: PMC9319976 DOI: 10.3390/nu14142938] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are capable of synthesising metabolites known as exopolysaccharides (EPS) during fermentation. Traditionally, EPS plays an important role in fermented dairy products through their gelling and thickening properties, but they can also be beneficial to human health. This bioactivity has gained attention in applications for functional foods, which leads them to have prebiotic, immunomodulatory, antioxidant, anti-tumour, cholesterol-lowering and anti-obesity activity. Understanding the parameters and conditions is crucial to optimising the EPS yields from LAB for applications in the food industry. This review provides an overview of the functional food market together with the biosynthesis of EPS. Factors influencing the production of EPS as well as methods for isolation, characterisation and quantification are reviewed. Finally, the health benefits associated with EPS are discussed.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| |
Collapse
|
12
|
Bio_Fabricated Levan Polymer from Bacillus subtilis MZ292983.1 with Antibacterial, Antibiofilm, and Burn Healing Properties. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136413] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The biopolymer levan has sparked a lot of interest in commercial production and various industrial applications. In this study, a bacterial isolate with promising levan-producing ability was isolated from a soil sample obtained from Princess Nourah bint Abdulrahman University in Saudi Arabia. The isolate has been identified and submitted to GenBank as Bacillus subtilis MZ292983.1. The bacterial levan polymer was extracted using ethyl alcohol (75%) and CaCl2 (1%) and then characterized using several approaches, such as Fourier transform infrared spectrometry and nuclear magnetic resonance. The IR spectrum of the levan polymer showed characteristic peaks confirming characteristics of polysaccharides, including a broad stretching peak of OH around 3417 cm−1 and aliphatic CH stretching was observed as two peaks at 2943, and 2885 cm−1. In addition, the FTIR spectrum featured an absorption at 2121 cm−1, indicating the fingerprint of the β-glycosidic bond. Based on 1H and 13C NMR spectroscopy analysis, six unexchanged proton signals related to fructose as a forming monomer of levan were observed. Evaluation of levan’s antibacterial effect against two pathogenic bacteria, S. aureus (ATCC 33592) and E. coli (ATCC 25922), showed inhibition zones of 1 cm and 0.8 cm in diameter, respectively, with MICs of more than 256 μg mL−1 for both strains. Moreover, the antibiofilm property of the levan polymer was assessed and the results showed that the inhibition rate was positively proportional to the levan concentration, as the inhibition percentages were 50%, 29.4%, 29.4%, 26.5%, and 14.7% at concentrations of 2, 1, 0.5, 0.25, and 0.125 mg mL−1, respectively. Levan showed a significant role in burn healing properties since it accelerated the process of healing burn-induced areas in rats when compared with those either treated with normal saline or treated with the cream base only.
Collapse
|
13
|
Structural Characterization of Exopolysaccharide Produced by Leuconostoccitreum B-2 Cultured in Molasses Medium and Its Application in Set Yogurt. Processes (Basel) 2022. [DOI: 10.3390/pr10050891] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Sugarcane molasses is an agricultural by-product containing sucrose. In this study, the exopolysaccharide (M-EPS) produced by Leuconostoc citreum B-2 in molasses-based medium was characterized, optimized, and its application in set yogurt was investigated. The structure analysis, including gel permeation chromatography, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, revealed that the M-EPS was a linear dextran composed of D-glucose units, which were linked by α-(1→6) glycosidic bonds with 19.3% α-(1→3) branches. The M-EPS showed a lower molecular weight than that produced from sucrose. The M-EPS was added into the set yogurt, and then the water holding capacity, pH, and microstructure of set yogurt were evaluated. Compared with the controls, the addition of M-EPS improved the water holding capacity and reduced the pH of set yogurt. Meanwhile, the structure of the three-dimensional network was also observed in the set yogurt containing M-EPS, indicating that M-EPS had a positive effect on the stability of set yogurt. The results provide a theoretical basis for the cost-effective utilization of sugarcane molasses.
Collapse
|
14
|
The C-Terminal Domain of Liquorilactobacillus nagelii Dextransucrase Mediates the Production of Larger Dextrans Compared to Liquorilactobacillus hordei. Gels 2022; 8:gels8030171. [PMID: 35323284 PMCID: PMC8954249 DOI: 10.3390/gels8030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 02/05/2023] Open
Abstract
Dextransucrases released by certain lactic acid bacteria form glucose polymers with predominantly α-1,6-linkages and may be exploited biotechnologically for the tailored production of polysaccharides with application potential. Despite releasing two closely related dextransucrases, previous studies showed that water kefir borne Liquorilactobacillus (L.) hordei TMW 1.1822 and L. nagelii TMW 1.1827 produce different amounts of polysaccharides with distinct particle sizes (molecular weight and radius of gyration) and molecular architectures. To investigate where these differences originate and thus to provide deeper insights into the functionally diverse nature of polysaccharide formation during water kefir fermentation, we constructed two variants of the L. nagelii dextransucrase—a full-length enzyme and a truncated variant, devoid of a C-terminal glucan-binding domain that reflects the domain architecture of the L. hordei dextransucrase—and applied them at various enzyme concentrations to form dextran over 24 h. The full-length enzyme exhibited a high activity, forming constant amounts of dextran until a four-fold dilution, whereas the truncated variant showed a gradual decrease in activity and dextran formation at an increasing dilution. The application of the full-length enzyme resulted in higher average particle sizes compared to the truncated variant. However, the dilution of the enzyme extracts also led to a slight increase in the average particle size in both enzymes. Neither the domain architecture nor the enzyme concentration had an impact on the structural architecture of the dextrans. The presented results thus suggest that the comparatively higher processivity of the L. nagelii dextransucrase is predominantly caused by the additional C-terminal glucan-binding domain, which is absent in the L. hordei dextransucrase. The average particle size may be influenced, to some extent, by the applied reaction conditions, whereas the structural architecture of the dextrans is most likely caused by differences in the amino acid sequence of the catalytic domain.
Collapse
|