1
|
Campanharo CV, Dos Santos Silveira LV, Meira DD, Casotti MC, Altoé LSC, Louro ID, Gonçalves AFM, Machado AM, Paiva BS, de Souza Inocencio E, Rocha FVV, Pesente F, de Castro GDSC, da Paixão JPDS, Bourguignon JHB, Carneiro JS, de Oliveira JR, de Souza Freire P, Zamprogno SB, Dos Santos Uchiya T, de Paula Rezende T, de Pádua Sanders Medeiros V. Pan-cancer and multiomics: advanced strategies for diagnosis, prognosis, and therapy in the complex genetic and molecular universe of cancer. Clin Transl Oncol 2024:10.1007/s12094-024-03819-4. [PMID: 39725831 DOI: 10.1007/s12094-024-03819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
The pan-cancer and multi-omics approach is motivated by the genetic and molecular complexity inherent in the varied types of cancer. This method presents itself as a crucial resource for advancing early diagnosis, defining prognoses and identifying treatments that share common bases between different forms of tumors. The aim of this article is to explore pan-cancer analysis in conjunction with multi-omics strategies, evaluating laboratory, computational, clinical procedures and their consequences, as well as examining the tumor microenvironment, epigenetics and future directions of these technologies in patient management. To this end, a literature review was conducted using PUBMED, resulting in the selection of 260 articles, of which 81 were carefully chosen to support this analysis. The pan-cancer methodology is applied to the study of this microenvironment with the aim of investigating its common characteristics through multiomics data. The development of new therapies depends on understanding the oncogenic pathways associated with different cancers. Thus, the integration of multi-omics and pan-cancer analyzes offers an innovative perspective in the search for new control points, metabolic pathways and markers, in addition to facilitating the identification of patterns common to multiple cancer types, allowing the development of targeted treatments. In this way, the convergence of multiomics and clinical approaches promotes a broad view of cancer biology, leading to more effective and personalized therapies.
Collapse
Affiliation(s)
- Camilly Victória Campanharo
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Lívia Valle Dos Santos Silveira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil.
| | - Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Iúri Drumond Louro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - André Felipe Monteiro Gonçalves
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - André Manhães Machado
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Breno Sousa Paiva
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Ester de Souza Inocencio
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Fabio Victor Vieira Rocha
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Fellipe Pesente
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Giulia de Souza Cupertino de Castro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - João Pedro Dos Santos da Paixão
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - José Henrique Borges Bourguignon
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Júlia Salarini Carneiro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Juliana Ribeiro de Oliveira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Pâmela de Souza Freire
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Sophia Bridi Zamprogno
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Taissa Dos Santos Uchiya
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Thais de Paula Rezende
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| | - Vinícius de Pádua Sanders Medeiros
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Av. Fernando Ferrari, N. 514, Prédio Ciências Biológicas, Bloco A, Sala 106, Vitória, Espírito Santo, Brasil
| |
Collapse
|
2
|
Sadr Z, Ghasemi M, Jafarpour S, Seyfi R, Ghasemi A, Boustanipour E, Khorshid HRK, Ehtesham N. Beginning at the ends: telomere and telomere-based cancer therapeutics. Mol Genet Genomics 2024; 300:1. [PMID: 39638969 DOI: 10.1007/s00438-024-02206-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Telomeres, which are situated at the terminal ends of chromosomes, undergo a reduction in length with each cellular division, ultimately reaching a critical threshold that triggers cellular senescence. Cancer cells circumvent this senescence by utilizing telomere maintenance mechanisms (TMMs) that grant them a form of immortality. These mechanisms can be categorized into two primary processes: the reactivation of telomerase reverse transcriptase and the alternative lengthening of telomeres (ALT) pathway, which is dependent on homologous recombination (HR). Various strategies have been developed to inhibit telomerase activation in 85-95% of cancers, including the use of antisense oligonucleotides such as small interfering RNAs and endogenous microRNAs, agents that simulate telomere uncapping, expression modulators, immunotherapeutic vaccines targeting telomerase, reverse transcriptase inhibitors, stabilization of G-quadruplex structures, and gene therapy approaches. Conversely, in the remaining 5-15% of human cancers that rely on ALT, mechanisms involve modifications in the chromatin environment surrounding telomeres, upregulation of TERRA long non-coding RNA, enhanced activation of the ataxia telangiectasia and Rad-3-related protein kinase signaling pathway, increased interactions with nuclear receptors, telomere repositioning driven by HR, and recombination events between non-sister chromatids, all of which present potential targets for therapeutic intervention. Additionally, combinatorial therapy has emerged as a strategy that employs selective agents to simultaneously target both telomerase and ALT, aiming for optimal clinical outcomes. Given the critical role of anti-TMM strategies in cancer treatment, this review provides an overview of the latest insights into the structure and function of telomeres, their involvement in tumorigenesis, and the advancements in TMM-based cancer therapies.
Collapse
Affiliation(s)
- Zahra Sadr
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Masoumeh Ghasemi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Soheyla Jafarpour
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reyhaneh Seyfi
- Department of Stem Cells Technology and Tissue Regeneration, Faculty of Interdisciplinary Science and Technologies, Tarbiat Modares University, Tehran, Iran
| | - Aida Ghasemi
- Neuromuscular Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Boustanipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Naeim Ehtesham
- Department of Medical Genetics, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
4
|
López-Cortés A, Prathap L, Ortiz-Prado E, Kyriakidis NC, León Cáceres Á, Armendáriz-Castillo I, Vera-Guapi A, Yumiceba V, Simbaña-Rivera K, Echeverría-Garcés G, García-Cárdenas JM, Pérez-Villa A, Guevara-Ramírez P, Abad-Sojos A, Bautista J, Puig San Andrés L, Varela N, Guerrero S. The close interaction between hypoxia-related proteins and metastasis in pancarcinomas. Sci Rep 2022; 12:11100. [PMID: 35773405 PMCID: PMC9246854 DOI: 10.1038/s41598-022-15246-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Many primary-tumor subregions exhibit low levels of molecular oxygen and restricted access to nutrients due to poor vascularization in the tissue, phenomenon known as hypoxia. Hypoxic tumors are able to regulate the expression of certain genes and signaling molecules in the microenvironment that shift it towards a more aggressive phenotype. The transcriptional landscape of the tumor favors malignant transformation of neighboring cells and their migration to distant sites. Herein, we focused on identifying key proteins that participate in the signaling crossroads between hypoxic environment and metastasis progression that remain poorly defined. To shed light on these mechanisms, we performed an integrated multi-omics analysis encompassing genomic/transcriptomic alterations of hypoxia-related genes and Buffa hypoxia scores across 17 pancarcinomas taken from the PanCancer Atlas project from The Cancer Genome Atlas consortium, protein-protein interactome network, shortest paths from hypoxia-related proteins to metastatic and angiogenic phenotypes, and drugs involved in current clinical trials to treat the metastatic disease. As results, we identified 30 hypoxia-related proteins highly involved in metastasis and angiogenesis. This set of proteins, validated with the MSK-MET Project, could represent key targets for developing therapies. The upregulation of mRNA was the most prevalent alteration in all cancer types. The highest frequencies of genomic/transcriptomic alterations and hypoxia score belonged to tumor stage 4 and positive metastatic status in all pancarcinomas. The most significantly associated signaling pathways were HIF-1, PI3K-Akt, thyroid hormone, ErbB, FoxO, mTOR, insulin, MAPK, Ras, AMPK, and VEGF. The interactome network revealed high-confidence interactions among hypoxic and metastatic proteins. The analysis of shortest paths revealed several ways to spread metastasis and angiogenesis from hypoxic proteins. Lastly, we identified 23 drugs enrolled in clinical trials focused on metastatic disease treatment. Six of them were involved in advanced-stage clinical trials: aflibercept, bevacizumab, cetuximab, erlotinib, ipatasertib, and panitumumab.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, 170302, Quito, Ecuador.
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de Las Américas, 170124, Quito, Ecuador.
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain.
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 600077, Chennai, India
| | - Esteban Ortiz-Prado
- One Health Research Group, Universidad de Las Américas, 170124, Quito, Ecuador
| | | | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, 69117, Heidelberg, Germany
| | - Isaac Armendáriz-Castillo
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Instituto Nacional de Investigación en Salud Pública, 170136, Quito, Ecuador
- Facultad de Ingenierías y Ciencias Aplicadas, Universidad Internacional SEK, 170302, Quito, Ecuador
| | - Antonella Vera-Guapi
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| | - Verónica Yumiceba
- Institut Für Humangenetik Lübeck, Universität Zu Lübeck, 23562, Lübeck, Germany
| | - Katherine Simbaña-Rivera
- One Health Research Group, Universidad de Las Américas, 170124, Quito, Ecuador
- Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, 170113, Quito, Ecuador
| | - Andy Pérez-Villa
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | - Patricia Guevara-Ramírez
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | | | | | | | - Nelson Varela
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, 8320000, Santiago, Chile
| | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain.
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, 170113, Quito, Ecuador.
| |
Collapse
|