1
|
Fan C, Yang X, Yan L, Shi Z. Oxidative stress is two-sided in the treatment of acute myeloid leukemia. Cancer Med 2024; 13:e6806. [PMID: 38715546 PMCID: PMC11077289 DOI: 10.1002/cam4.6806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Oxidative stress caused by elevated ROS, as a novel therapeutic mechanism, has been implicated in various tumors including AML. AML cells are chronically under oxidative stress, yet overreliance on ROS production makes tumor cells increasingly vulnerable to further damage. Reducing the cytotoxic effect of ROS on normal cells while killing leukemia stem cell (LSC) with high levels of reactive oxygen species is a new challenge for oxidative stress therapy in leukemia. METHODS By searching literature databases, we summarized recent relevant studies. The relationship of ROS on AML genes, signaling pathways, and transcription factors, and the correlation of ROS with AML bone marrow microenvironment and autophagy were summarized. In addition, we summarize the current status of research on ROS and AML therapeutics. Finally, we discuss the research progress on redox resistance in AML. RESULTS This review discusses the evidence showing the link between redox reactions and the progression of AML and compiles the latest research findings that will facilitate future biological studies of redox effects associated with AML treatment. CONCLUSION We believe that exploiting this unique oxidative stress property of AML cells may provide a new way to prevent relapse and drug resistance.
Collapse
Affiliation(s)
- Chenyang Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Xiangdong Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Lixiang Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| | - Zhexin Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
| |
Collapse
|
2
|
López-Cortés A, Prathap L, Ortiz-Prado E, Kyriakidis NC, León Cáceres Á, Armendáriz-Castillo I, Vera-Guapi A, Yumiceba V, Simbaña-Rivera K, Echeverría-Garcés G, García-Cárdenas JM, Pérez-Villa A, Guevara-Ramírez P, Abad-Sojos A, Bautista J, Puig San Andrés L, Varela N, Guerrero S. The close interaction between hypoxia-related proteins and metastasis in pancarcinomas. Sci Rep 2022; 12:11100. [PMID: 35773405 PMCID: PMC9246854 DOI: 10.1038/s41598-022-15246-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/21/2022] [Indexed: 11/25/2022] Open
Abstract
Many primary-tumor subregions exhibit low levels of molecular oxygen and restricted access to nutrients due to poor vascularization in the tissue, phenomenon known as hypoxia. Hypoxic tumors are able to regulate the expression of certain genes and signaling molecules in the microenvironment that shift it towards a more aggressive phenotype. The transcriptional landscape of the tumor favors malignant transformation of neighboring cells and their migration to distant sites. Herein, we focused on identifying key proteins that participate in the signaling crossroads between hypoxic environment and metastasis progression that remain poorly defined. To shed light on these mechanisms, we performed an integrated multi-omics analysis encompassing genomic/transcriptomic alterations of hypoxia-related genes and Buffa hypoxia scores across 17 pancarcinomas taken from the PanCancer Atlas project from The Cancer Genome Atlas consortium, protein-protein interactome network, shortest paths from hypoxia-related proteins to metastatic and angiogenic phenotypes, and drugs involved in current clinical trials to treat the metastatic disease. As results, we identified 30 hypoxia-related proteins highly involved in metastasis and angiogenesis. This set of proteins, validated with the MSK-MET Project, could represent key targets for developing therapies. The upregulation of mRNA was the most prevalent alteration in all cancer types. The highest frequencies of genomic/transcriptomic alterations and hypoxia score belonged to tumor stage 4 and positive metastatic status in all pancarcinomas. The most significantly associated signaling pathways were HIF-1, PI3K-Akt, thyroid hormone, ErbB, FoxO, mTOR, insulin, MAPK, Ras, AMPK, and VEGF. The interactome network revealed high-confidence interactions among hypoxic and metastatic proteins. The analysis of shortest paths revealed several ways to spread metastasis and angiogenesis from hypoxic proteins. Lastly, we identified 23 drugs enrolled in clinical trials focused on metastatic disease treatment. Six of them were involved in advanced-stage clinical trials: aflibercept, bevacizumab, cetuximab, erlotinib, ipatasertib, and panitumumab.
Collapse
Affiliation(s)
- Andrés López-Cortés
- Programa de Investigación en Salud Global, Facultad de Ciencias de la Salud, Universidad Internacional SEK, 170302, Quito, Ecuador.
- Escuela de Medicina, Facultad de Ciencias de la Salud, Universidad de Las Américas, 170124, Quito, Ecuador.
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain.
| | - Lavanya Prathap
- Department of Anatomy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, 600077, Chennai, India
| | - Esteban Ortiz-Prado
- One Health Research Group, Universidad de Las Américas, 170124, Quito, Ecuador
| | | | - Ángela León Cáceres
- Heidelberg Institute of Global Health, Faculty of Medicine, University of Heidelberg, 69117, Heidelberg, Germany
| | - Isaac Armendáriz-Castillo
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Instituto Nacional de Investigación en Salud Pública, 170136, Quito, Ecuador
- Facultad de Ingenierías y Ciencias Aplicadas, Universidad Internacional SEK, 170302, Quito, Ecuador
| | - Antonella Vera-Guapi
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, 07747, Jena, Germany
| | - Verónica Yumiceba
- Institut Für Humangenetik Lübeck, Universität Zu Lübeck, 23562, Lübeck, Germany
| | - Katherine Simbaña-Rivera
- One Health Research Group, Universidad de Las Américas, 170124, Quito, Ecuador
- Latin American Network for Cancer Research (LAN-CANCER), Lima, Peru
| | - Gabriela Echeverría-Garcés
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | - Jennyfer M García-Cárdenas
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, 170113, Quito, Ecuador
| | - Andy Pérez-Villa
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | - Patricia Guevara-Ramírez
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
| | | | | | | | - Nelson Varela
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics, Department of Basic-Clinical Oncology, Faculty of Medicine, University of Chile, 8320000, Santiago, Chile
| | - Santiago Guerrero
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), 28015, Madrid, Spain.
- Laboratorio de Ciencia de Datos Biomédicos, Escuela de Medicina, Facultad de Ciencias Médicas de la Salud y de la Vida, Universidad Internacional del Ecuador, 170113, Quito, Ecuador.
| |
Collapse
|