1
|
Ciani M, Decorosi F, Ratti C, De Philippis R, Adessi A. Semi-continuous cultivation of EPS-producing marine cyanobacteria: A green biotechnology to remove dissolved metals obtaining metal-organic materials. N Biotechnol 2024; 82:33-42. [PMID: 38714292 DOI: 10.1016/j.nbt.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/09/2024]
Abstract
Given the necessity for bioprocesses scaling-up, the present study aims to explore the potential of three marine cyanobacteria and a consortium, cultivated in semi-continuous mode, as a green approach for i) continuous exopolysaccharide-rich biomass production and ii) removal of positively charged metals (Cu, Ni, Zn) from mono and multi-metallic solutions. To ensure the effectiveness of both cellular and released exopolysaccharides, weekly harvested whole cultures were confined in dialysis tubings. The results revealed that all the tested cyanobacteria have a stronger affinity towards Cu in mono and three-metal systems. Despite the amount of metals removed per gram of biomass decreased with higher biosorbent dosage, the more soluble carbohydrates were produced, the greater was the metal uptake, underscoring the pivotal role of released exopolysaccharides in metal biosorption. According to this, Dactylococcopsis salina 16Som2 showed the highest carbohydrate productivity (142 mg L-1 d-1) and metal uptake (84 mg Cu g-1 biomass) representing a promising candidate for further studies. The semi-continuous cultivation of marine cyanobacteria here reported assures a schedulable production of exopolysaccharide-rich biosorbents with high metal removal and recovery potential, even from multi-metallic solutions, as a step forward in the industrial application of cyanobacteria.
Collapse
Affiliation(s)
- Matilde Ciani
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine, 18, 50144 Florence, Italy
| | - Francesca Decorosi
- Genexpress Laboratory, Department of Agronomy, Food, Environmental and Forestry Sciences (DAGRI), University of Florence, I-50019 Sesto Fiorentino, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences, University of Bologna, Viale G. Fanin, 40, 40127 Bologna, Italy
| | - Roberto De Philippis
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine, 18, 50144 Florence, Italy
| | - Alessandra Adessi
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Piazzale delle Cascine, 18, 50144 Florence, Italy.
| |
Collapse
|
2
|
Torres MJ, Bellido-Pedraza CM, Llamas A. Applications of the Microalgae Chlamydomonas and Its Bacterial Consortia in Detoxification and Bioproduction. Life (Basel) 2024; 14:940. [PMID: 39202682 PMCID: PMC11355400 DOI: 10.3390/life14080940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/03/2024] Open
Abstract
The wide metabolic diversity of microalgae, their fast growth rates, and low-cost production make these organisms highly promising resources for a variety of biotechnological applications, addressing critical needs in industry, agriculture, and medicine. The use of microalgae in consortia with bacteria is proving valuable in several areas of biotechnology, including the treatment of various types of wastewater, the production of biofertilizers, and the extraction of various products from their biomass. The monoculture of the microalga Chlamydomonas has been a prominent research model for many years and has been extensively used in the study of photosynthesis, sulphur and phosphorus metabolism, nitrogen metabolism, respiration, and flagellar synthesis, among others. Recent research has increasingly recognised the potential of Chlamydomonas-bacteria consortia as a biotechnological tool for various applications. The detoxification of wastewater using Chlamydomonas and its bacterial consortia offers significant potential for sustainable reduction of contaminants, while facilitating resource recovery and the valorisation of microalgal biomass. The use of Chlamydomonas and its bacterial consortia as biofertilizers can offer several benefits, such as increasing crop yields, protecting crops, maintaining soil fertility and stability, contributing to CO2 mitigation, and contributing to sustainable agricultural practises. Chlamydomonas-bacterial consortia play an important role in the production of high-value products, particularly in the production of biofuels and the enhancement of H2 production. This review aims to provide a comprehensive understanding of the potential of Chlamydomonas monoculture and its bacterial consortia to identify current applications and to propose new research and development directions to maximise their potential.
Collapse
Affiliation(s)
- María J. Torres
- Correspondence: (M.J.T.); (A.L.); Tel.: +34-957-218352 (M.J.T. & A.L.)
| | | | - Angel Llamas
- Department of Biochemistry and Molecular Biology, Campus de Rabanales and Campus Internacional de Excelencia Agroalimentario (CeiA3), Edif. Severo Ochoa, University of Córdoba, 14071 Córdoba, Spain;
| |
Collapse
|
3
|
Makepa DC, Chihobo CH. Barriers to commercial deployment of biorefineries: A multi-faceted review of obstacles across the innovation chain. Heliyon 2024; 10:e32649. [PMID: 39183827 PMCID: PMC11341323 DOI: 10.1016/j.heliyon.2024.e32649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 08/27/2024] Open
Abstract
Realizing integrated biorefineries producing multiple fuels, chemicals and materials from sustainable biomass feedstocks holds promise for transitioning industries onto low-carbon trajectories. However, widespread commercial implementation remains elusive despite two decades of technological advancements. This review synthesizes current literature to provide a comprehensive analysis of key multi-dimensional barriers inhibiting the scale-up of biorefineries. The review discusses the technical challenges around biomass conversion processes. Economic viability concerns such as high capital costs and lack of market competitiveness are also assessed. The review also evaluates the regulatory and policy complexities that poses risks and uncertainties in the scaling up of biorefineries. Socio-political acceptance hurdles including community engagement and public perception are also reviewed. The interconnected nature of these challenges is emphasized and strategies are recommended to enable full potential realization, covering areas such as enhanced stakeholder collaboration, advanced process intensification, supportive policy frameworks, innovative financing models and strategic marketing initiatives. International pilots and cross-sectoral knowledge exchange are highlighted as priority enablers. In conclusion, this review synthesizes insights from extensive demonstration efforts to identify priorities and pathways for accelerating the global commercial transition towards sustainable biorefinery implementation. It aims to inform strategic decision-making and collaborative actions amongst stakeholders in research, industry and policy domains.
Collapse
Affiliation(s)
- Denzel Christopher Makepa
- Department of Fuels and Energy Engineering, Chinhoyi University of Technology, Private Bag, 7724, Chinhoyi, Zimbabwe
| | - Chido Hermes Chihobo
- Department of Fuels and Energy Engineering, Chinhoyi University of Technology, Private Bag, 7724, Chinhoyi, Zimbabwe
| |
Collapse
|
4
|
Uguz S, Sozcu A. Pollutant Gases to Algal Animal Feed: Impacts of Poultry House Exhaust Air on Amino Acid Profile of Algae. Animals (Basel) 2024; 14:754. [PMID: 38473139 DOI: 10.3390/ani14050754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Algae provide a rich source of proteins, lipids, vitamins, and minerals, making them valuable feed ingredients in animal nutrition. Beyond their nutritional benefits, algae have been recognized for their potential to mitigate the negative environmental impacts of poultry production. Poultry production is crucial for the global food supply but contributes to environmental concerns, particularly in terms of ammonia and carbon dioxide gas emissions. This study emphasizes the importance of reducing greenhouse gas and ammonia production in poultry operations by utilizing algae species suitable for animal consumption, highlighting the need for sustainable feed sources. This study investigated the effects of poultry exhaust air and culture conditions on the amino acid profiles of three microalgae species, namely, Scenedesmus sp. (AQUAMEB-60), Ankistrodesmus sp. (AQUAMEB-33), and Synechococcaceae (AQUAMEB 32). The experiments were conducted in a commercial broiler farm in Bursa, Turkey, focusing on reducing pollutant gas emissions and utilizing poultry exhaust air in algae cultivation. The highest protein content of 50.4% was observed in the biomass of Synechococcaceae with BBM and DI water. Scenedesmus sp. had the highest carbohydrate content of 33.4% cultivated with DI water. The algae biomass produced from Synechococcaceae growth with DI water was found to have the highest content of essential and nonessential amino acids, except for glutamic acid and glycine. The arsenic, cadmium, and mercury content showed variations within the following respective ranges: 1.076-3.500 mg/kg, 0.0127-0.1210 mg/kg, and 0.1330-0.0124 mg/kg. The overall operating costs for producing 1.0 g L-1 d-1 of dry algal biomass with the existing PBR system were $0.12-0.35 L-1 d-1, $0.10-0.26 L-1 d-1, and $0.11-0.24 L-1 d-1 for Scenedesmus sp., Ankistrodesmus sp., and Synechococcaceae, respectively. The operating cost of producing 1.0 g L-1 d-1 of protein was in the range of $0.25-0.88 L-1 d-1 for the three algae species. The results provide insights into the potential of algae as a sustainable feed ingredient in animal diets, emphasizing both environmental and economic considerations. The results demonstrated a considerable reduction in the production costs of dry biomass and protein when utilizing poultry house exhaust air, highlighting the economic viability and nutritional benefits of this cultivation method.
Collapse
Affiliation(s)
- Seyit Uguz
- Department of Biosystems Engineering, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Turkey
- Department of Biosystems Engineering, Faculty of Engineering and Architecture, Yozgat Bozok University, Yozgat 66200, Turkey
| | - Arda Sozcu
- Department of Animal Science, Faculty of Agriculture, Bursa Uludag University, Bursa 16059, Turkey
| |
Collapse
|
5
|
Sun D, Wu S, Li X, Ge B, Zhou C, Yan X, Ruan R, Cheng P. The Structure, Functions and Potential Medicinal Effects of Chlorophylls Derived from Microalgae. Mar Drugs 2024; 22:65. [PMID: 38393036 PMCID: PMC10890356 DOI: 10.3390/md22020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/20/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Microalgae are considered to be natural producers of bioactive pigments, with the production of pigments from microalgae being a sustainable and economical strategy that promises to alleviate growing demand. Chlorophyll, as the main pigment of photosynthesis, has been widely studied, but its medicinal applications as an antioxidant, antibacterial, and antitumor reagent are still poorly understood. Chlorophyll is the most important pigment in plants and algae, which not only provides food for organisms throughout the biosphere, but also plays an important role in a variety of human and man-made applications. The biological activity of chlorophyll is closely related to its chemical structure; its specific structure offers the possibility for its medicinal applications. This paper reviews the structural and functional roles of microalgal chlorophylls, commonly used extraction methods, and recent advances in medicine, to provide a theoretical basis for the standardization and commercial production and application of chlorophylls.
Collapse
Affiliation(s)
- Danni Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Songlin Wu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Baosheng Ge
- State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China;
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
| | - Xiaojun Yan
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China; (D.S.); (S.W.); (X.L.); (C.Z.)
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
6
|
Rossi S, Carecci D, Marazzi F, Di Benedetto F, Mezzanotte V, Parati K, Alberti D, Geraci I, Ficara E. Integrating microalgae growth in biomethane plants: Process design, modelling, and cost evaluation. Heliyon 2024; 10:e23240. [PMID: 38163195 PMCID: PMC10755323 DOI: 10.1016/j.heliyon.2023.e23240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
The integration of microalgae cultivation in anaerobic digestion (AD) plants can take advantage of relevant nutrients (ammonium and ortho-phosphate) and CO2 loads. The proposed scheme of microalgae integration in existing biogas plants aims at producing approximately 250 t·y-1 of microalgal biomass, targeting the biostimulants market that is currently under rapid expansion. A full-scale biorefinery was designed to treat 50 kt·y-1 of raw liquid digestate from AD and 0.45 kt·y-1 of CO2 from biogas upgrading, and 0.40 kt·y-1 of sugar-rich solid by-products from a local confectionery industry. An innovative three-stage cultivation process was designed, modelled, and verified, including: i) microalgae inoculation in tubular PBRs to select the desired algal strains, ii) microalgae cultivation in raceway ponds under greenhouses, and iii) heterotrophic microalgae cultivation in fermenters. A detailed economic assessment of the proposed biorefinery allowed to compute a biomass production cost of 2.8 ± 0.3 €·kg DW-1, that is compatible with current downstream process costs to produce biostimulants, suggesting that the proposed nutrient recovery route is feasible from the technical and economic perspective. Based on the case study analysis, a discussion of process, bioproducts and policy barriers that currently hinder the development of microalgae-based biorefineries is presented.
Collapse
Affiliation(s)
- Simone Rossi
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Davide Carecci
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Francesca Marazzi
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Francesca Di Benedetto
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| | - Valeria Mezzanotte
- University of Milano – Bicocca, DISAT – Department of Earth and Environmental Sciences, 1, P.zza della Scienza, 20126 Milano, Italy
| | - Katia Parati
- Istituto Sperimentale Italiano Lazzaro Spallanzani, Aquaculture division, 26027 Rivolta d’Adda, Italy
| | | | | | - Elena Ficara
- Politecnico di Milano, DICA – Department of Civil and Environmental Engineering, 2, P.zza Leonardo da Vinci, 20133 Milano, Italy
| |
Collapse
|
7
|
Galasso C, Ruocco N, Mutalipassi M, Barra L, Costa V, Giommi C, Dinoi A, Genovese M, Pica D, Romano C, Greco S, Pennesi C. Marine polysaccharides, proteins, lipids, and silica for drug delivery systems: A review. Int J Biol Macromol 2023; 253:127145. [PMID: 37778590 DOI: 10.1016/j.ijbiomac.2023.127145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Marine environments represent an incredible source of biopolymers with potential biomedical applications. Recently, drug delivery studies have received great attention for the increasing need to improve site specificity, therapeutic value, and bioavailability, reducing off-target effects. Marine polymers, such as alginate, carrageenan, collagen, chitosan, and silica, have reported unique biochemical features, allowing an efficient binding with drugs, and a controlled release to the target tissue, also obtainable through "green processes". In the present review, we i) analysed the last ten years of scientific peer-reviewed literature; ii) divided the articles based on the achieved experimental phases, tagged as chemistry, drug release, and drug delivery, and iii) compared the best performances among marine polymers extracted from micro- and macro-organisms. Many reviews describe drug carriers from marine organisms, focusing on a single biopolymer or a chemical class. Our study is a groundbreaking literature collection, representing the first thorough investigation of all marine biopolymers described. Most articles report experimental results on the chemical characterisation of marine biopolymers and their in vitro behaviour as drug carriers, although development processes and commercial applications are still in the early stages. Hence, the next efforts should be focused on the sustainable production of marine polymers and final product development.
Collapse
Affiliation(s)
- Christian Galasso
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Nadia Ruocco
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| | - Mirko Mutalipassi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy; NBFC, National Biodiversity Future Center, Piazza Marina 61, 90133 Palermo, Italy
| | - Lucia Barra
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Valentina Costa
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Giommi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Alessia Dinoi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Martina Genovese
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Daniela Pica
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Romano
- University of Gastronomic Sciences, Piazza Vittorio Emanuele II, 9, 12042 Pollenzo, Bra CN, Italy
| | - Silvestro Greco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy
| | - Chiara Pennesi
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Calabria Marine Centre, C.da Torre Spaccata, Amendolara, Italy.
| |
Collapse
|
8
|
Byeon H, An Y, Kim T, Rayamajhi V, Lee J, Shin H, Jung S. Effects of Four Organic Carbon Sources on the Growth and Astaxanthin Accumulation of Haematococcus lacustris. Life (Basel) 2023; 14:29. [PMID: 38255645 PMCID: PMC10820012 DOI: 10.3390/life14010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
The microalga Haematococcus lacustris has a complex life cycle and a slow growth rate, hampering its mass cultivation. Culture of microalgae with organic carbon sources can increase the growth rate. Few studies have evaluated the effects of organic carbon sources on H. lacustris. We compared the vegetative and inductive stages of H. lacustris under autotrophic and mixotrophic conditions using four organic carbon sources: sodium acetate, glycerol, sodium gluconate, and ribose, each at various concentrations (0.325, 0.65, 1.3, and 2.6 g/L). The cell density was increased by 1.3 g/L of glycerol in the vegetative stage. The rapid transition to the inductive stage under nitrogen-depletion conditions caused by 1.3 or 2.6 g/L sodium acetate promoted the accumulation of astaxanthin. The production of astaxanthin by H. lacustris in mass culture using organic carbon sources could increase profitability.
Collapse
Affiliation(s)
- Huijeong Byeon
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Yunji An
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Taesoo Kim
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Vijay Rayamajhi
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| | - Jihyun Lee
- Korea Fisheries Resources Agency East Sea Branch, Samho-ro, Buk-gu, Pohang 37601, Gyungsangbuk-do, Republic of Korea
| | - HyunWoung Shin
- Department of Biology, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
- AlgaeBio, Inc., Asan 31459, Chungcheongnam-do, Republic of Korea
| | - SangMok Jung
- Research Institute for Basic Science, Soonchunhyang University, Asan 31538, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
9
|
Wang D, de Los Reyes FL, Ducoste JJ. Microplate-Based Cell Viability Assay as a Cost-Effective Alternative to Flow Cytometry for Microalgae Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21200-21211. [PMID: 38048183 DOI: 10.1021/acs.est.3c05675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Cell viability is a critical indicator for assessing culture quality in microalgae cultivation for biorefinery and bioremediation. Fluorescent dyes that distinguish viable from nonviable cells can enable viability quantification based on the percentage of live cells. However, fluorescence analysis using the typical flow cytometry method is costly and impractical for industrial applications. To address this, we developed new microplate assays utilizing fluorescein diacetate as a live cell stain and erythrosine B as a dead cell stain. These assays provide a low-cost, simple, and reliable method of assessing cell viability. The proposed microplate assays were successfully applied to monitor the viability of the microalgae Dunaliella viridis under carbon and nitrogen limitation stresses and demonstrated good agreement with flow cytometry measurements. We conducted a systematic investigation of the effects of dye concentration, incubation time, and background fluorescence on the microplate assays' performance. Further, we provide a comprehensive review of commonly used fluorescent dyes for microalgae staining, discuss strategies to enhance assay performance, and offer recommendations for dye selection and protocol development. This study presents a comprehensive new method for microplate-based viability analysis, providing valuable insights for future microalgae viability assessments and applications.
Collapse
Affiliation(s)
- Diyuan Wang
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Joel J Ducoste
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
10
|
Takagi A, Nagao M, Uejima Y, Sasaki D, Asayama M. Efficient pH and dissolved CO 2 conditions for indoor and outdoor cultures of green alga Parachlorella. Front Bioeng Biotechnol 2023; 11:1233944. [PMID: 37767110 PMCID: PMC10520278 DOI: 10.3389/fbioe.2023.1233944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient pH and dissolved CO2 conditions for indoor (50-450 mL scale) and outdoor (100-500 L scale) culture of a green alga BX1.5 strain that can produce useful intracellular lipids and extracellular polysaccharides were investigated for the first time in Parachlorella sp. The cultures harvested under 26 different conditions were analysed for pH, dissolved CO2 concentration, and the biomass of extracellular polysaccharides. The BX1.5 strain could thrive in a wide range of initial medium pH ranging from 3 to 11 and produced valuable lipids such as C16:0, C18:2, and C18:3 under indoor and outdoor culture conditions when supplied with 2.0% dissolved CO2. Particularly, the acidic BG11 medium effectively increased the biomass of extracellular polysaccharides during short-term outdoor cultivation. The BG11 liquid medium also led to extracellular polysaccharide production, independent of acidity and alkalinity, proportional to the increase in total sugars derived from cells supplied with high CO2 concentrations. These results suggest Parachlorella as a promising strain for indoor and outdoor cultivation to produce valuable materials.
Collapse
Affiliation(s)
- Akari Takagi
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Misato Nagao
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | - Yuya Uejima
- College of Agriculture, Ibaraki University, Ibaraki, Japan
| | | | - Munehiko Asayama
- College of Agriculture, Ibaraki University, Ibaraki, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
11
|
Bulynina SS, Ziganshina EE, Ziganshin AM. Growth Efficiency of Chlorella sorokiniana in Synthetic Media and Unsterilized Domestic Wastewater. BIOTECH 2023; 12:53. [PMID: 37606440 PMCID: PMC10443301 DOI: 10.3390/biotech12030053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/23/2023] Open
Abstract
Incorporating a variety of microalgae into wastewater treatment is considered an economically viable and environmentally sound strategy. The present work assessed the growth characteristics of Chlorella sorokiniana during cultivation in balanced synthetic media and domestic wastewater. Increasing the NH4+-N concentration to 360 mg L-1 and adding extra PO43--P and SO42--S (up to 80 and 36 mg L-1, respectively) contributed to an increase in the total biomass levels (5.7-5.9 g L-1) during the cultivation of C. sorokiniana in synthetic media. Under these conditions, the maximum concentrations of chlorophylls and carotenoids were 180 ± 7.5 and 26 ± 1.4 mg L-1, respectively. Furthermore, when studying three types of domestic wastewaters, it was noted that only one wastewater contributed to the productive growth of C. sorokiniana, but all wastewaters stimulated an increased accumulation of protein. Finally, the alga, when growing in optimal unsterilized wastewater, showed a maximum specific growth rate of 0.73 day-1, a biomass productivity of 0.21 g L-1 day-1, and 100% NH4+-N removal. These results demonstrate that the tested alga actively adapts to changes in the composition of the growth medium and accumulates high levels of protein in systems with poor-quality water.
Collapse
Affiliation(s)
| | | | - Ayrat M. Ziganshin
- Department of Microbiology, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Republic of Tatarstan, Russia; (S.S.B.); (E.E.Z.)
| |
Collapse
|
12
|
Mourya M, Khan MJ, Sirotiya V, Ahirwar A, Schoefs B, Marchand J, Varjani S, Vinayak V. Enhancing the biochemical growth of Haematococcus pluvialis by mitigation of broad-spectrum light stress in wastewater cultures. RSC Adv 2023; 13:17611-17620. [PMID: 37313002 PMCID: PMC10258810 DOI: 10.1039/d3ra01530k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Abstract
In this study, the microalgae Haematococcus pluvialis were cultivated in wastewater inoculated into low-density polypropylene plastic air pillows (LDPE-PAPs) under a light stress. The cells were irradiated to different light stresses using white LED lights (WLs) as the control, and broad-spectrum lights (BLs) as a test for the period of 32 days. It was observed that the inoculum (70 × 102 mL-1 cells) of H. pluvialis algal cells increased almost 30 and 40 times in WL and BL, respectively, at day 32 coherent to its biomass productivity. Higher lipid concentration of up to 36.85 μg mL-1 was observed in BL irradiated cells compared to 13.215 μg L-1 dry weight of biomass in WL. The chlorophyll 'a' content was 2.6 times greater in BL (3.46 μg mL-1) compared to that in WL (1.32 μg mL-1) with total carotenoids being about 1.5 times greater in BL compared to WL on day 32. The yield of red pigment 'Astaxanthin' was about 27% greater in BL than in WL. The presence, of different carotenoids including astaxanthin was also confirmed by HPLC, whereas fatty acid methyl esters (FAMEs) were confirmed by GC-MS. This study further confirmed that wastewater alongwith with light stress is suitable for the biochemical growth of H. pluvialis with good biomass yield as well as carotenoid accumulation. Additionally there was 46% reduction in chemical oxygen demand (COD) in a far more efficient manner when cultured in recycled LDPE-PAP. Such type of cultivation of H. pluvialis made the overall process economical and suitable for upscaling to produce value-added products such as lipids, pigments, biomass, and biofuel for commercial applications.
Collapse
Affiliation(s)
- Megha Mourya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University Sagar MP 470003 India
| | - Mohd J Khan
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University Sagar MP 470003 India
| | - Vandana Sirotiya
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University Sagar MP 470003 India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Biology of Organisms, Stress, Health and Environment, Le Mans University, IUML - FR 3473 CNRS Le Mans France
| | - Ankesh Ahirwar
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University Sagar MP 470003 India
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Biology of Organisms, Stress, Health and Environment, Le Mans University, IUML - FR 3473 CNRS Le Mans France
| | - Benoit Schoefs
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Biology of Organisms, Stress, Health and Environment, Le Mans University, IUML - FR 3473 CNRS Le Mans France
| | - Justine Marchand
- Metabolism, Bioengineering of Microalgal Metabolism and Applications (MIMMA), Biology of Organisms, Stress, Health and Environment, Le Mans University, IUML - FR 3473 CNRS Le Mans France
| | - Sunita Varjani
- School of Energy and Environment, City University of Hong Kong Tat Chee Avenue Kowloon 999077 Hong Kong
- Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies Dehradun-248 007 Uttarakhand India
| | - Vandana Vinayak
- Diatom Nanoengineering and Metabolism Laboratory (DNM), School of Applied Science, Dr. Hari Singh Gour Central University Sagar MP 470003 India
| |
Collapse
|
13
|
Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, Ma Z, Show PL. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. BIORESOURCE TECHNOLOGY 2023; 372:128661. [PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
Collapse
Affiliation(s)
- Tengku Nilam Baizura Tengku Ibrahim
- Department of Environmental Health, Faculty of Health Sciences, Universiti Teknologi MARA, Cawangan Pulau Pinang, Kampus Bertam, 13200, Kepala Batas, Pulau Pinang, Malaysia
| | - Nur Azalina Suzianti Feisal
- Department of Environmental Health, Faculty of Health Sciences, MAHSA University, Bandar Saujana Putra, 42610 Jenjarom, Selangor, Malaysia
| | - Noor Haziqah Kamaludin
- Center of Environmental Health & Safety, Faculty of Health Sciences, Universiti Teknologi MARA, Puncak Alam 42300, Selangor, Malaysia
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - Vivien How
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| | - Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Malaysia; Department of Chemical Engineering, Khalifa University, Shakhbout Bin Sultan St - Zone 1, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
14
|
Laboratory- and Pilot-Scale Cultivation of Tetraselmis striata to Produce Valuable Metabolic Compounds. Life (Basel) 2023; 13:life13020480. [PMID: 36836837 PMCID: PMC9962084 DOI: 10.3390/life13020480] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Marine microalgae are considered an important feedstock of multiple valuable metabolic compounds of high biotechnological potential. In this work, the marine microalga Tetraselmis striata was cultivated in different scaled photobioreactors (PBRs). Initially, experiments were performed using two different growth substrates (a modified F/2 and the commercial fertilizer Nutri-Leaf (30% TN-10% P-10% K)) to identify the most efficient and low-cost growth medium. These experiments took place in 4 L glass aquariums at the laboratory scale and in a 9 L vertical tubular pilot column. Enhanced biomass productivities (up to 83.2 mg L-1 d-1) and improved biomass composition (up to 41.8% d.w. proteins, 18.7% d.w. carbohydrates, 25.7% d.w. lipids and 4.2% d.w. total chlorophylls) were found when the fertilizer was used. Pilot-scale experiments were then performed using Nutri-Leaf as a growth medium in different PBRs: (a) a paddle wheel, open, raceway pond of 40 L, and (b) a disposable polyethylene (plastic) bag of 280 L working volume. Biomass growth and composition were also monitored at the pilot scale, showing that high-quality biomass can be produced, with important lipids (up to 27.6% d.w.), protein (up to 45.3% d.w.), carbohydrate (up to 15.5% d.w.) and pigment contents (up to 4.2% d.w. total chlorophylls), and high percentages of eicosapentaenoic acid (EPA). The research revealed that the strain successfully escalated in larger volumes and the biochemical composition of its biomass presents high commercial interest and could potentially be used as a feed ingredient.
Collapse
|
15
|
Martins R, Sales H, Pontes R, Nunes J, Gouveia I. Food Wastes and Microalgae as Sources of Bioactive Compounds and Pigments in a Modern Biorefinery: A Review. Antioxidants (Basel) 2023; 12:antiox12020328. [PMID: 36829887 PMCID: PMC9952682 DOI: 10.3390/antiox12020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
The United Nations 2030 Agenda for Sustainable Development has created more pressure on countries and society at large for the development of alternative solutions for synthetic and fossil fuel derived products, thus mitigating climate change and environmental hazards. Food wastes and microalgae have been studied for decades as potential sources of several compounds that could be employed in various fields of application from pharmaceutical to textile and packaging. Although multiple research efforts have been put towards extracting rich compounds (i.e., phenolic compounds, tocopherols, and tocotrienols) from these sources, they still remain overlooked as two major sources of bioactive compounds and pigments, mainly due to inefficient extraction processes. Hence, there is a growing need for the development of optimized extraction methods while employing non-organic solvent options following the main principles of green chemistry. This review will focus on delivering a clear and deep analysis on the existing procedures for obtaining bioactive compounds and pigments from food wastes derived from the most consumed and produced fruit crops in the world such as apples, oranges, cherries, almonds, and mangoes, and microalgal biomass, while giving light to the existing drawbacks in need to be solved in order to take full advantage of the rich properties present in these two major biorefinery sources.
Collapse
Affiliation(s)
- Rodrigo Martins
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal
| | - Hélia Sales
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
| | - Rita Pontes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
| | - João Nunes
- Association BLC3—Technology and Innovation Campus, Centre Bio R&D Unit, Oliveira do Hospital, 3405-155 Coimbra, Portugal
- BLC3 Evolution Lda, Oliveira do Hospital, 3405-155 Coimbra, Portugal
| | - Isabel Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal
- Correspondence: ; Tel.: +35-127-531-9825
| |
Collapse
|
16
|
Nur MMA, Rahmawati SD, Sari IW, Achmad Z, Setyoningrum TM, Jaya D, Murni SW, Djarot IN. Enhancement of phycocyanin and carbohydrate production from Spirulina platensis growing on tofu wastewater by employing mixotrophic cultivation condition. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|