1
|
Sharma N, Heer K, Raychaudhuri S. Substitution of leucine by glutamate perturbs VopE localization to mitochondria: Lessons from yeast model system. Mitochondrion 2024; 81:101999. [PMID: 39675495 DOI: 10.1016/j.mito.2024.101999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 11/12/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
VopE, a type III effector protein of Vibrio cholerae, modulates host mitochondrial function. Mitochondrial entry of VopE is directly linked with an N-terminal precursor sequence known as the mitochondrial targeting sequence or MTS. MTS of VopE is constituted with 23 amino acids. Earlier studies have shown the importance of leucine residue at position 4 in VopE translocation to mitochondria. In the present study, we have identified another leucine residue at position 15 contributing to the mitochondrial uptake of VopE in the yeast model system. Substitution of leucine15 with glutamate decreases mitochondrial localization and toxicity of the mutants.
Collapse
Affiliation(s)
- Nandita Sharma
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kiran Heer
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Saumya Raychaudhuri
- CSIR-Institute of Microbial Technology, Sector 39A, Chandigarh 160036, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
2
|
Khramtsov YV, Ulasov AV, Lupanova TN, Slastnikova TA, Rosenkranz AA, Bunin ES, Georgiev GP, Sobolev AS. Intracellular Degradation of SARS-CoV-2 N-Protein Caused by Modular Nanotransporters Containing Anti-N-Protein Monobody and a Sequence That Recruits the Keap1 E3 Ligase. Pharmaceutics 2023; 16:4. [PMID: 38276482 PMCID: PMC10818351 DOI: 10.3390/pharmaceutics16010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
The proper viral assembly relies on both nucleic acids and structural viral proteins. Thus a biologically active agent that provides the degradation of one of these key proteins and/or destroys the viral factory could suppress viral replication efficiently. The nucleocapsid protein (N-protein) is a key protein for the SARS-CoV-2 virus. As a bioactive agent, we offer a modular nanotransporter (MNT) developed by us, which, in addition to an antibody mimetic to the N-protein, contains an amino acid sequence for the attraction of the Keap1 E3 ubiquitin ligase. This should lead to the subsequent degradation of the N-protein. We have shown that the functional properties of modules within the MNT permit its internalization into target cells, endosome escape into the cytosol, and binding to the N-protein. Using flow cytometry and western blotting, we demonstrated significant degradation of N-protein when A549 and A431 cells transfected with a plasmid coding for N-protein were incubated with the developed MNTs. The proposed MNTs open up a new approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Yuri V. Khramtsov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexey V. Ulasov
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana N. Lupanova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Tatiana A. Slastnikova
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Andrey A. Rosenkranz
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Egor S. Bunin
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| | - Georgii P. Georgiev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
| | - Alexander S. Sobolev
- Laboratory of Molecular Genetics of Intracellular Transport, Institute of Gene Biology of Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; (Y.V.K.); (A.V.U.); (T.N.L.); (T.A.S.); (A.A.R.); (E.S.B.); (G.P.G.)
- Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory St., 119234 Moscow, Russia
| |
Collapse
|