1
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
2
|
Fossel M. Curing age-related disease, transforming global medicine. Expert Opin Ther Targets 2024; 28:481-485. [PMID: 37902505 DOI: 10.1080/14728222.2023.2277223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/26/2023] [Indexed: 10/31/2023]
|
3
|
Gao Z, Santos RB, Rupert J, Van Drunen R, Yu Y, Eckel‐Mahan K, Kolonin MG. Endothelial-specific telomerase inactivation causes telomere-independent cell senescence and multi-organ dysfunction characteristic of aging. Aging Cell 2024; 23:e14138. [PMID: 38475941 PMCID: PMC11296101 DOI: 10.1111/acel.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
It has remained unclear how aging of endothelial cells (EC) contributes to pathophysiology of individual organs. Cell senescence results in part from inactivation of telomerase (TERT). Here, we analyzed mice with Tert knockout specifically in EC. Tert loss in EC induced transcriptional changes indicative of senescence and tissue hypoxia in EC and in other cells. We demonstrate that EC-Tert-KO mice have leaky blood vessels. The blood-brain barrier of EC-Tert-KO mice is compromised, and their cognitive function is impaired. EC-Tert-KO mice display reduced muscle endurance and decreased expression of enzymes responsible for oxidative metabolism. Our data indicate that Tert-KO EC have reduced mitochondrial content and function, which results in increased dependence on glycolysis. Consistent with this, EC-Tert-KO mice have metabolism changes indicative of increased glucose utilization. In EC-Tert-KO mice, expedited telomere attrition is observed for EC of adipose tissue (AT), while brain and skeletal muscle EC have normal telomere length but still display features of senescence. Our data indicate that the loss of Tert causes EC senescence in part through a telomere length-independent mechanism undermining mitochondrial function. We conclude that EC-Tert-KO mice is a model of expedited vascular senescence recapitulating the hallmarks aging, which can be useful for developing revitalization therapies.
Collapse
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rafael Bravo Santos
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Joseph Rupert
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Rachel Van Drunen
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Kristin Eckel‐Mahan
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular MedicineUniversity of Texas Health Science CenterHoustonTexasUSA
| |
Collapse
|
4
|
Wilbon SS, Kolonin MG. GLP1 Receptor Agonists-Effects beyond Obesity and Diabetes. Cells 2023; 13:65. [PMID: 38201269 PMCID: PMC10778154 DOI: 10.3390/cells13010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP1RA) have been transformative for patients and clinicians in treating type-2 diabetes and obesity. Drugs of this class, the bioavailability of which is continuously improving, enable weight loss and control blood glucose with minimal unwanted side effects. Since adopting GLP1RA for treating metabolic diseases, animal and clinical studies have revealed their beneficial effects on several other pathologies, including cardiovascular diseases, neurodegeneration, kidney disease, and cancer. A notable commonality between these diseases is their association with older age. Clinical trials and preclinical data suggest that GLP1RA may improve outcomes in these aging-related diseases. Some of the benefits of GLP1RA may be indirect due to their effects on obesity and glucose metabolism. However, there is building evidence that GLP1RA may also act directly on multiple organs implicated in aging-related pathology. This review aims to compile the studies reporting the effects of GLP1RA on aging-related diseases and discuss potential underlying mechanisms.
Collapse
Affiliation(s)
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX 77030, USA;
| |
Collapse
|
5
|
Gao Z, Yu Y, Dai Y, Zhao Z, Eckel-Mahan K, Kolonin MG. Gene expression in mice with endothelium-specific telomerase knockout. Front Cell Dev Biol 2023; 11:1295072. [PMID: 38161328 PMCID: PMC10755458 DOI: 10.3389/fcell.2023.1295072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Zhanguo Gao
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Yongmei Yu
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Yulin Dai
- Center for Precision Health, Cancer Genomics Core, University of Texas Health Science Center, Houston, TX, United States
| | - Zhongming Zhao
- Center for Precision Health, Cancer Genomics Core, University of Texas Health Science Center, Houston, TX, United States
| | - Kristin Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center, Houston, TX, United States
| |
Collapse
|
6
|
Ferrer A, Stephens ZD, Kocher JPA. Experimental and Computational Approaches to Measure Telomere Length: Recent Advances and Future Directions. Curr Hematol Malig Rep 2023; 18:284-291. [PMID: 37947937 PMCID: PMC10709248 DOI: 10.1007/s11899-023-00717-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE OF REVIEW The length of telomeres, protective structures at the chromosome ends, is a well-established biomarker for pathological conditions including multisystemic syndromes called telomere biology disorders. Approaches to measure telomere length (TL) differ on whether they estimate average, distribution, or chromosome-specific TL, and each presents their own advantages and limitations. RECENT FINDINGS The development of long-read sequencing and publication of the telomere-to-telomere human genome reference has allowed for scalable and high-resolution TL estimation in pre-existing sequencing datasets but is still impractical as a dedicated TL test. As sequencing costs continue to fall and strategies for selectively enriching telomere regions prior to sequencing improve, these approaches may become a promising alternative to classic methods. Measurement methods rely on probe hybridization, qPCR or more recently, computational methods using sequencing data. Refinements of existing techniques and new approaches have been recently developed but a test that is accurate, simple, and scalable is still lacking.
Collapse
Affiliation(s)
- Alejandro Ferrer
- Division of Hematology, Mayo Clinic, Rochester, 200 First Street SW, Rochester, MN, USA.
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| | | | | |
Collapse
|
7
|
Skapetze L, Owino S, Lo EH, Arai K, Merrow M, Harrington M. Rhythms in barriers and fluids: Circadian clock regulation in the aging neurovascular unit. Neurobiol Dis 2023; 181:106120. [PMID: 37044366 DOI: 10.1016/j.nbd.2023.106120] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023] Open
Abstract
The neurovascular unit is where two very distinct physiological systems meet: The central nervous system (CNS) and the blood. The permeability of the barriers separating these systems is regulated by time, including both the 24 h circadian clock and the longer processes of aging. An endogenous circadian rhythm regulates the transport of molecules across the blood-brain barrier and the circulation of the cerebrospinal fluid and the glymphatic system. These fluid dynamics change with time of day, and with age, and especially in the context of neurodegeneration. Factors may differ depending on brain region, as can be highlighted by consideration of circadian regulation of the neurovascular niche in white matter. As an example of a potential target for clinical applications, we highlight chaperone-mediated autophagy as one mechanism at the intersection of circadian dysregulation, aging and neurodegenerative disease. In this review we emphasize key areas for future research.
Collapse
Affiliation(s)
- Lea Skapetze
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sharon Owino
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Martha Merrow
- Institute of Medical Psychology, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, MA 01060, United States of America.
| |
Collapse
|