1
|
Wu K, Yan Z, Wu Z, Li J, Zhong W, Ding L, Zhong T, Jiang T. Recent Advances in the Preparation, Antibacterial Mechanisms, and Applications of Chitosan. J Funct Biomater 2024; 15:318. [PMID: 39590522 PMCID: PMC11595984 DOI: 10.3390/jfb15110318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/04/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Chitosan, a cationic polysaccharide derived from the deacetylation of chitin, is widely distributed in nature. Its antibacterial activity, biocompatibility, biodegradability, and non-toxicity have given it extensive uses in medicine, food, and cosmetics. However, the significant impact of variations in the physicochemical properties of chitosan extracted from different sources on its application efficacy, as well as the considerable differences in its antimicrobial mechanisms under varying conditions, limit the full realization of its biological functions. Therefore, this paper provides a comprehensive review of the structural characteristics of chitosan, its preparation methods from different sources, its antimicrobial mechanisms, and the factors influencing its antimicrobial efficacy. Furthermore, we highlight the latest applications of chitosan and its derivatives across various fields. We found that the use of microbial extraction shows promise as a new method for producing high-quality chitosan. By analyzing the different physicochemical properties of chitosan from various sources and the application of chitosan-based materials (such as nanoparticles, films, sponges, and hydrogels) prepared using different methods in biomedicine, food, agriculture, and cosmetics, we expect these findings to provide theoretical support for the broader utilization of chitosan.
Collapse
Affiliation(s)
- Kunjian Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Ziyuan Yan
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China;
| | - Ziyang Wu
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Jiaye Li
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Wendi Zhong
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Linyu Ding
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China;
| | - Tao Jiang
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China; (K.W.); (J.L.); (W.Z.); (L.D.)
- School of Pharmacy, Faculty of Medicine, Macau University of Science and Technology, Macao 999078, China
| |
Collapse
|
2
|
Vasquez YMSC, Cueva-Yesquen LG, Duarte AWF, Rosa LH, Valladão R, Lopes AR, Costa Bonugli-Santos R, de Oliveira VM. Genomics, Proteomics, and Antifungal Activity of Chitinase from the Antarctic Marine Bacterium Curtobacterium sp. CBMAI 2942. Int J Mol Sci 2024; 25:9250. [PMID: 39273199 PMCID: PMC11395076 DOI: 10.3390/ijms25179250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
This study aimed to evaluate the genomic profile of the Antarctic marine Curtobacterium sp. CBMAI 2942, as well as to optimize the conditions for chitinase production and antifungal potential for biological control. Assembly and annotation of the genome confirmed the genomic potential for chitinase synthesis, revealing two ChBDs of chitin binding (Chi C). The optimization enzyme production using an experimental design resulted in a 3.7-fold increase in chitinase production. The chitinase enzyme was identified by SDS-PAGE and confirmed through mass spectrometry analysis. The enzymatic extract obtained using acetone showed antifungal activity against the phytopathogenic fungus Aspergillus sp. series Nigri CBMAI 1846. The genetic capability of Curtobacterium sp. CBMAI 2942 for chitin degradation was confirmed through genomic analysis. The basal culture medium was adjusted, and the chitinase produced by this isolate from Antarctica showed significant inhibition against Aspergillus sp. Nigri series CBMAI 1846, which is a tomato phytopathogenic fungus. This suggests that this marine bacterium could potentially be used as a biological control of agricultural pests.
Collapse
Affiliation(s)
- Yesenia Melissa Santa-Cruz Vasquez
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Luis Gabriel Cueva-Yesquen
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
- Institute of Biology, Campinas State University (UNICAMP), Campinas 13083-970, SP, Brazil
| | - Alysson Wagner Fernandes Duarte
- Complexo de Ciências Médicas e de Enfermagem, Universidade Federal de Alagoas, Campus Arapiraca, Arapiraca 57309-005, AL, Brazil
| | - Luiz Henrique Rosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil;
| | - Rodrigo Valladão
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Adriana Rios Lopes
- Laboratory of Biochemistry, Instituto Butantan, São Paulo 05585-000, SP, Brazil; (R.V.); (A.R.L.)
| | - Rafaella Costa Bonugli-Santos
- Instituto Latino Americano de Ciências da Vida e da Natureza (ILACVN), Universidade Federal da Integração Latino-Americana (UNILA), Foz do Iguaçu 85870-650, PR, Brazil;
| | - Valéria Maia de Oliveira
- Divisão de Recursos Microbianos, Centro Pluridisciplinar de Pesquisas Químicas, Biológicas e Agrícolas (CPQBA), Universidade Estadual de Campinas (UNICAMP), Paulínia 13148-218, SP, Brazil; (Y.M.S.-C.V.); (L.G.C.-Y.)
| |
Collapse
|
3
|
Wang X, Yang Y, Zhao S, Wu D, Li L, Zhao Z. Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma. Front Pharmacol 2024; 15:1446030. [PMID: 39161903 PMCID: PMC11330802 DOI: 10.3389/fphar.2024.1446030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Hepatocellular carcinoma accounts for 80% of primary liver cancers, is the most common primary liver malignancy. Hepatocellular carcinoma is the third leading cause of tumor-related deaths worldwide, with a 5-year survival rate of approximately 18%. Chemotherapy, although commonly used for hepatocellular carcinoma treatment, is limited by systemic toxicity and drug resistance. Improving targeted delivery of chemotherapy drugs to tumor cells without causing systemic side effects is a current research focus. Chitosan, a biopolymer derived from chitin, possesses good biocompatibility and biodegradability, making it suitable for drug delivery. Enhanced chitosan formulations retain the anti-tumor properties while improving stability. Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis, exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis, and improve extracellular matrix remodeling for enhanced anti-tumor therapy. Methods We summarized published experimental papers by querying them. Results and Conclusions This review discusses the physicochemical properties of chitosan, its application in hepatocellular carcinoma treatment, and the challenges faced by chitosan-based biomaterials.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Di Wu
- First Digestive Endoscopy Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Mészáros Z, Kulik N, Petrásková L, Bojarová P, Texidó M, Planas A, Křen V, Slámová K. Three-Step Enzymatic Remodeling of Chitin into Bioactive Chitooligomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15613-15623. [PMID: 38978453 PMCID: PMC11261597 DOI: 10.1021/acs.jafc.4c03077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024]
Abstract
Here we describe a complex enzymatic approach to the efficient transformation of abundant waste chitin, a byproduct of the food industry, into valuable chitooligomers with a degree of polymerization (DP) ranging from 6 to 11. This method involves a three-step process: initial hydrolysis of chitin using engineered variants of a novel fungal chitinase from Talaromyces flavus to generate low-DP chitooligomers, followed by an extension to the desired DP using the high-yielding Y445N variant of β-N-acetylhexosaminidase from Aspergillus oryzae, achieving yields of up to 57%. Subsequently, enzymatic deacetylation of chitooligomers with DP 6 and 7 was accomplished using peptidoglycan deacetylase from Bacillus subtilis BsPdaC. The innovative enzymatic procedure demonstrates a sustainable and feasible route for converting waste chitin into unavailable bioactive chitooligomers potentially applicable as natural pesticides in ecological and sustainable agriculture.
Collapse
Affiliation(s)
- Zuzana Mészáros
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Natalia Kulik
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Lucie Petrásková
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Pavla Bojarová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Mònica Texidó
- Laboratory
of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, ES 08017 Barcelona, Spain
| | - Antoni Planas
- Laboratory
of Biochemistry, Institut Químic de Sarrià, University Ramon Llull, ES 08017 Barcelona, Spain
| | - Vladimír Křen
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| | - Kristýna Slámová
- Institute
of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 14200, Prague 4, Czech Republic
| |
Collapse
|
5
|
Guo HZ, Wang D, Yang HT, Wu YL, Li YC, Xia GH, Zhang XY. Heterologous Expression and Characterization of a pH-Stable Chitinase from Micromonospora aurantiaca with a Potential Application in Chitin Degradation. Mar Drugs 2024; 22:287. [PMID: 38921598 PMCID: PMC11204758 DOI: 10.3390/md22060287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
To promote the bioconversion of marine chitin waste into value-added products, we expressed a novel pH-stable Micromonospora aurantiaca-derived chitinase, MaChi1, in Escherichia coli and subsequently purified, characterized, and evaluated it for its chitin-converting capacity. Our results indicated that MaChi1 is of the glycoside hydrolase (GH) family 18 with a molecular weight of approximately 57 kDa, consisting of a GH18 catalytic domain and a cellulose-binding domain. We recorded its optimal activity at pH 5.0 and 55 °C. It exhibited excellent stability in a wide pH range of 3.0-10.0. Mg2+ (5 mM), and dithiothreitol (10 mM) significantly promoted MaChi1 activity. MaChi1 exhibited broad substrate specificity and hydrolyzed chitin, chitosan, cellulose, soluble starch, and N-acetyl chitooligosaccharides with polymerization degrees ranging from three to six. Moreover, MaChi1 exhibited an endo-type cleavage pattern, and it could efficiently convert colloidal chitin into N-acetyl-D-glucosamine (GlcNAc) and (GlcNAc)2 with yields of 227.2 and 505.9 mg/g chitin, respectively. Its high chitin-degrading capacity and exceptional pH tolerance makes it a promising tool with potential applications in chitin waste treatment and bioactive oligosaccharide production.
Collapse
Affiliation(s)
- Han-Zhong Guo
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Dou Wang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Hui-Ting Yang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Yu-Le Wu
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Yong-Cheng Li
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
| | - Guang-Hua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Xue-Ying Zhang
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Key Laboratory of Seafood Processing of Haikou, National R&D Branch Center for Prawn Processing Technology (Haikou), School of Food Science and Engineering, Hainan University, Haikou 570228, China; (H.-Z.G.); (D.W.); (H.-T.Y.); (Y.-L.W.); (Y.-C.L.); (G.-H.X.)
- Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Marine Food Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
6
|
Wang L, Xue M, Yan R, Xue J, Lu Z, Wen C. Insights into Chitin-Degradation Potential of Shewanella khirikhana JW44 with Emphasis on Characterization and Function of a Chitinase Gene SkChi65. Microorganisms 2024; 12:774. [PMID: 38674717 PMCID: PMC11052142 DOI: 10.3390/microorganisms12040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
Chitin, a polymer of β-1,4-linked N-acetylglucosamine (GlcNAc), can be degraded into valuable oligosaccharides by various chitinases. In this study, the genome of Shewanella khirikhana JW44, displaying remarkable chitinolytic activity, was investigated to understand its chitin-degradation potential. A chitinase gene SkChi65 from this strain was then cloned, expressed, and purified to characterize its enzymatic properties and substrate hydrolysis. Genome analysis showed that, of the 14 genes related to chitin utilization in JW44, six belonged to glycoside hydrolase (GH) families because of their functional domains for chitin binding and catalysis. The recombinant chitinase SkChi65, consisting of 1129 amino acids, was identified as a member of the GH18 family and possessed two chitin-binding domains with a typical motif of [A/N]KWWT[N/S/Q] and one catalytic domain with motifs of DxxDxDxE, SxGG, YxR, and [E/D]xx[V/I]. SkChi65 was heterologously expressed as an active protein of 139.95 kDa best at 37 °C with 1.0 mM isopropyl-β-d-thiogalactopyranoside induction for 6 h. Purified SkChi65 displayed high stability over the ranges of 30-50 °C and pH 5.5-8.0 with optima at 40 °C and pH 7.0. The kinetic parameters Km, Vmax, and kcat of SkChi65 towards colloidal chitin were 27.2 μM, 299.2 μMs-1, and 10,203 s-1, respectively. In addition to colloidal chitin, SkChi65 showed high activity towards glycol chitosan and crystalline chitin. After analysis by thin-layer chromatography, the main products were N,N'-diacetylchitobiose, and GlcNAc with (GlcNAc)2-6 used as substrates. Collectively, SkChi65 could exhibit both exo- and endochitinase activities towards diverse substrates, and strain JW44 has a high potential for industrial application with an excellent capacity for chitin bioconversion.
Collapse
Affiliation(s)
- Ling Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ming Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| | - Rui Yan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiawei Xue
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhipeng Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Chongqing Wen
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang 524088, China
| |
Collapse
|
7
|
Minguet-Lobato M, Cervantes FV, Míguez N, Plou FJ, Fernández-Lobato M. Chitinous material bioconversion by three new chitinases from the yeast Mestchnikowia pulcherrima. Microb Cell Fact 2024; 23:31. [PMID: 38245740 PMCID: PMC10799394 DOI: 10.1186/s12934-024-02300-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Chitinases are widely distributed enzymes that perform the biotransformation of chitin, one of the most abundant polysaccharides on the biosphere, into useful value-added chitooligosaccharides (COS) with a wide variety of biotechnological applications in food, health, and agricultural fields. One of the most important group of enzymes involved in the degradation of chitin comprises the glycoside hydrolase family 18 (GH18), which harbours endo- and exo-enzymes that act synergistically to depolymerize chitin. The secretion of a chitinase activity from the ubiquitous yeast Mestchnikowia pulcherrima and their involvement in the post-harvest biological control of fungal pathogens was previously reported. RESULTS Three new chitinases from M. pulcherrima, MpChit35, MpChit38 and MpChit41, were molecularly characterized and extracellularly expressed in Pichia pastoris to about 91, 90 and 71 mU ml- 1, respectively. The three enzymes hydrolysed colloidal chitin with optimal activity at 45 ºC and pH 4.0-4.5, increased 2-times their activities using 1 mM of Mn2+ and hydrolysed different types of commercial chitosan. The partial separation and characterization of the complex COS mixtures produced from the hydrolysis of chitin and chitosan were achieved by a new anionic chromatography HPAEC-PAD method and mass spectrometry assays. An overview of the predicted structures of these proteins and their catalytic modes of action were also presented. Depicted their high sequence and structural homology, MpChit35 acted as an exo-chitinase producing di-acetyl-chitobiose from chitin while MpChit38 and MpChit41 both acted as endo-chitinases producing tri-acetyl-chitotriose as main final product. CONCLUSIONS Three new chitinases from the yeast M. pulcherrima were molecularly characterized and their enzymatic and structural characteristics analysed. These enzymes transformed chitinous materials to fully and partially acetylated COS through different modes of splitting, which make them interesting biocatalysts for deeper structural-function studies on the challenging enzymatic conversion of chitin.
Collapse
Affiliation(s)
- Marina Minguet-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Fadia V Cervantes
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Noa Míguez
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC. C/ Marie Curie, 2. Cantoblanco, Madrid, 28049, Spain.
| | - María Fernández-Lobato
- Department of Molecular Biology, Centre for Molecular Biology Severo Ochoa (CBMSO, CSIC-UAM), University Autonomous from Madrid, C/ Nicolás Cabrera, 1. Cantoblanco, Madrid, 28049, Spain.
| |
Collapse
|
8
|
Cocean G, Cocean A, Garofalide S, Pelin V, Munteanu BS, Pricop DA, Motrescu I, Dimitriu DG, Cocean I, Gurlui S. Dual-Pulsed Laser Ablation of Oyster Shell Producing Novel Thin Layers Deposed to Saccharomyces cerevisiae. Polymers (Basel) 2023; 15:3953. [PMID: 37836002 PMCID: PMC10575290 DOI: 10.3390/polym15193953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
Dual-pulsed (DPL) laser deposition using oyster shells as targets was studied in order to find out if this method can replace the use of high-power pulsed lasers. Aspects related to changes in the morphological structure of the thin layer but also to the chemical composition of the obtained thin layer were analyzed and compared with the target as well as with the thin layers obtained with a higher power pulsed laser in a single-pulsed (SPL) regime. Orthorhombic structures were noticed with Scanning Electron Microscopy for the thin film obtained in DPL mode compared to the irregular particles obtained in SPL mode. The deacetylation process during ablation was evidenced by Fourier Transform Infrared spectroscopy, resulting in chitosan-based thin films. The effect of the obtained thin films of chitosan on the cells of baker's yeast (Saccharomyces cerevisiae) was studied. Restoration of the yeast paste into initial yeast was noticed mainly when the hemp fabric was used as support for the coating with yeas which was after that coated with chitosan thin film produced by DPL method.
Collapse
Affiliation(s)
- Georgiana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Rehabilitation Hospital Borsa, 1 Floare de Colt Street, 435200 Borsa, Romania
| | - Alexandru Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Silvia Garofalide
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Vasile Pelin
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Applied Meteorology and Climatology, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, A Building, Physics, 11 Carol I, 700506 Iasi, Romania
| | - Bogdanel Silvestru Munteanu
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Daniela Angelica Pricop
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
- Laboratory of Astronomy and Astrophysics, Research Center with Integrated Techniques for Atmospheric Aerosol Investigation in Romania (RECENT AIR), Alexandru Ioan Cuza University of Iasi, Astronomical Observatory, 11 Carol I, 700506 Iasi, Romania
| | - Iuliana Motrescu
- Sciences Department & Research Institute for Agriculture and Environment, Iasi University of Life Sciences, 3 Sadoveanu Alley, 700490 Iasi, Romania;
| | - Dan Gheorghe Dimitriu
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Iuliana Cocean
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| | - Silviu Gurlui
- Atmosphere Optics, Spectroscopy and Laser Laboratory (LOASL), Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (S.G.); (V.P.); (B.S.M.); (D.A.P.); (D.G.D.)
| |
Collapse
|
9
|
Taokaew S, Kriangkrai W. Correction: Taokaew, S.; Kriangkrai, W. Chitinase-Assisted Bioconversion of Chitinous Waste for Development of Value-Added Chito-Oligosaccharides Products. Biology 2023, 12, 87. BIOLOGY 2023; 12:biology12050689. [PMID: 37237571 DOI: 10.3390/biology12050689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023]
Abstract
In the original publication [...].
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
10
|
Taokaew S, Kaewkong W, Kriangkrai W. Recent Development of Functional Chitosan-Based Hydrogels for Pharmaceutical and Biomedical Applications. Gels 2023; 9:277. [PMID: 37102889 PMCID: PMC10138304 DOI: 10.3390/gels9040277] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
Chitosan is a promising naturally derived polysaccharide to be used in hydrogel forms for pharmaceutical and biomedical applications. The multifunctional chitosan-based hydrogels have attractive properties such as the ability to encapsulate, carry, and release the drug, biocompatibility, biodegradability, and non-immunogenicity. In this review, the advanced functions of the chitosan-based hydrogels are summarized, with emphasis on fabrications and resultant properties reported in literature from the recent decade. The recent progress in the applications of drug delivery, tissue engineering, disease treatments, and biosensors are reviewed. Current challenges and future development direction of the chitosan-based hydrogels for pharmaceutical and biomedical applications are prospected.
Collapse
Affiliation(s)
- Siriporn Taokaew
- Department of Materials Science and Bioengineering, School of Engineering, Nagaoka University of Technology, Nagaoka 940-2188, Japan
| | - Worasak Kaewkong
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Worawut Kriangkrai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|