1
|
Bhatt U, Singh H, Kalaji HM, Strasser RJ, Soni V. Decoding the physicochemical basis of resurrection: the journey of lichen Flavoparmelia caperata through prolonged water scarcity to full rehydration. BMC PLANT BIOLOGY 2024; 24:1268. [PMID: 39730993 DOI: 10.1186/s12870-024-05751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 10/25/2024] [Indexed: 12/29/2024]
Abstract
Desiccation tolerance is a complex phenomenon observed in the lichen Flavoparmelia ceparata. To understand the reactivation process of desiccated thalli, completely dried samples were rehydrated. The rehydration process of this lichen occurs in two phases. The first phase, characterized by rapid rehydration, involves the conversion of non-functional reaction centers (RCs) into functional PSII RCs, and the accumulation of ROS along with the increment in SOD antioxidant enzyme. These coordinated mechanisms initiate the light reaction of photosynthesis by forming active light-harvesting complexes (LHCs). This adaptation ensures efficient recovery, as evidenced by specific energy fluxes (ABS/RC, TR/RC, ET/RC, and DI/RC), phenomenological fluxes (ABS/CS, TR/CS, ET/CS, and DI/CS), quantum efficiencies (ФP0, ФE0, and ФD0), primary and secondary photochemistry, photochemical and non-photochemical quenching, and performance index, highlighting the essential role of rapid water uptake in restoring turgor pressure for cell structure and function maintenance. The interconnected network of antioxidant defenses, including catalase (CAT) and peroxidase (POD), underscores the plant's ability to cope with oxidative stress during resilience. The acid phosphomonoesterase (PME) enzymatic activity corresponds to its role in releasing phosphate for essential cellular functions and post-rehydration thallus growth. The activity of CAT, GPOD, and PME signifies the gradual reactivation of lichen F. caperata. Moreover, the investigation into chlorophyll a fluorescence emphasizes the efficient reactivation of the photosynthetic process in F. caperata. In conclusion, lichen F. caperata demonstrates significant potential for desiccation tolerance through the rapid transformation of chloroplasts, chlorophylls, and PSII RCs from their inactive to active states upon rehydration. This research not only enhances our understanding of desiccation tolerance in resurrection plants but also highlights the importance of lichens, particularly F. caperata, as valuable models for studying plant resilience in challenging environments.
Collapse
Affiliation(s)
- Upma Bhatt
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Hardeep Singh
- Botany Section, Regional Ayurveda Research Institute, Jaral Pandoh, Mandi-175124, Himachal Pradesh, India
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, Poland
- University of Life Sciences, Nowoursynowska 159, Warsaw, 02-776, Poland
| | - Reto J Strasser
- Plant Bioenergetics Laboratory, University of Geneva, Geneva, Switzerland
| | - Vineet Soni
- Plant Bioenergetics and Biotechnology Laboratory, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India.
| |
Collapse
|
2
|
Djilianov D, Moyankova D, Mladenov P, Topouzova-Hristova T, Kostadinova A, Staneva G, Zasheva D, Berkov S, Simova-Stoilova L. Resurrection Plants-A Valuable Source of Natural Bioactive Compounds: From Word-of-Mouth to Scientifically Proven Sustainable Use. Metabolites 2024; 14:113. [PMID: 38393005 PMCID: PMC10890500 DOI: 10.3390/metabo14020113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Resurrection plant species are a group of higher plants whose vegetative tissues are able to withstand long periods of almost full desiccation and recover quickly upon rewatering. Apart from being a model system for studying desiccation tolerance, resurrection plant species appear to be a valuable source of metabolites, with various areas of application. A significant number of papers have been published in recent years with respect to the extraction and application of bioactive compounds from higher resurrection plant species in various test systems. Promising results have been obtained with respect to antioxidative and antiaging effects in various test systems, particularly regarding valuable anticancer effects in human cell lines. Here, we review the latest advances in the field and propose potential mechanisms of action of myconoside-a predominant secondary compound in the European members of the Gesneriaceae family. In addition, we shed light on the possibilities for the sustainable use of natural products derived from resurrection plants.
Collapse
Affiliation(s)
- Dimitar Djilianov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Daniela Moyankova
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Petko Mladenov
- Agrobioinstitute, Agricultural Academy, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University 'St. Kliment Ohridski', 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
| | - Aneliya Kostadinova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Street, Bl. 21, 1113 Sofia, Bulgaria
| | - Diana Zasheva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Tsarigradsko Shosse, 73, 1113 Sofia, Bulgaria
| | - Strahil Berkov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 23 Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| | - Lyudmila Simova-Stoilova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 21 Bldg. Acad. Georgi Bonchev Street, 1113 Sofia, Bulgaria
| |
Collapse
|
3
|
Mladenov P, Wang X, Yang Z, Djilianov D, Deng X. Dynamics of chromatin accessibility and genome wide control of desiccation tolerance in the resurrection plant Haberlea rhodopensis. BMC PLANT BIOLOGY 2023; 23:654. [PMID: 38110858 PMCID: PMC10729425 DOI: 10.1186/s12870-023-04673-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/08/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND Drought is one of the main consequences of global climate change and this problem is expected to intensify in the future. Resurrection plants evolved the ability to withstand the negative impact of long periods of almost complete desiccation and to recover at rewatering. In this respect, many physiological, transcriptomic, proteomic and genomic investigations have been performed in recent years, however, few epigenetic control studies have been performed on these valuable desiccation-tolerant plants so far. RESULTS In the present study, for the first time for resurrection plants we provide evidences about the differential chromatin accessibility of Haberlea rhodopensis during desiccation stress by ATAC-seq (Assay for Transposase Accessible Chromatin with high-throughput sequencing). Based on gene similarity between species, we used the available genome of the closely related resurrection plant Dorcoceras hygrometricum to identify approximately nine hundred transposase hypersensitive sites (THSs) in H. rhodopensis. The majority of them corresponds to proximal and distal regulatory elements of different genes involved in photosynthesis, carbon metabolism, synthesis of secondary metabolites, cell signalling and transcriptional regulation, cell growth, cell wall, stomata conditioning, chaperons, oxidative stress, autophagy and others. Various types of binding motifs recognized by several families of transcription factors have been enriched from the THSs found in different stages of drought. Further, we used the previously published RNA-seq data from H. rhodopensis to evaluate the expression of transcription factors putatively interacting with the enriched motifs, and the potential correlation between the identified THS and the expression of their corresponding genes. CONCLUSIONS These results provide a blueprint for investigating the epigenetic regulation of desiccation tolerance in resurrection plant H. rhodopensis and comparative genomics between resurrection and non-resurrection species with available genome information.
Collapse
Affiliation(s)
- Petko Mladenov
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- Agricultural Academy, 8 Dragan Tzankov Blvd, Sofia, 1164, Bulgaria.
| | - Xiaohua Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhaolin Yang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Xin Deng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
| |
Collapse
|
4
|
Lin ES, Huang YH, Chung JC, Su HH, Huang CY. The Inhibitory Effects and Cytotoxic Activities of the Stem Extract of Nepenthes miranda against Single-Stranded DNA-Binding Protein and Oral Carcinoma Cells. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112188. [PMID: 37299167 DOI: 10.3390/plants12112188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023]
Abstract
The carnivorous pitcher plants of the genus Nepenthes exhibit many ethnobotanical uses, including treatments of stomachache and fever. In this study, we prepared different extracts from the pitcher, stem, and leaf extracts of Nepenthes miranda obtained using 100% methanol and analyzed their inhibitory effects on recombinant single-stranded DNA-binding protein (SSB) from Klebsiella pneumoniae (KpSSB). SSB is essential for DNA replication and cell survival and thus an attractive target for potential antipathogen chemotherapy. Different extracts prepared from Sinningia bullata, a tuberous member of the flowering plant family Gesneriaceae, were also used to investigate anti-KpSSB properties. Among these extracts, the stem extract of N. miranda exhibited the highest anti-KpSSB activity with an IC50 value of 15.0 ± 1.8 μg/mL. The cytotoxic effects of the stem extract of N. miranda on the survival and apoptosis of the cancer cell lines Ca9-22 gingival carcinoma, CAL27 oral adenosquamous carcinoma, PC-9 pulmonary adenocarcinoma, B16F10 melanoma, and 4T1 mammary carcinoma cells were also demonstrated and compared. Based on collective data, the cytotoxic activities of the stem extract at a concentration of 20 μg/mL followed the order Ca9-22 > CAL27 > PC9 > 4T1 > B16F10 cells. The stem extract of N. miranda at a concentration of 40 μg/mL completely inhibited Ca9-22 cell migration and proliferation. In addition, incubation with this extract at a concentration of 20 μg/mL boosted the distribution of the G2 phase from 7.9% to 29.2% in the Ca9-22 cells; in other words, the stem extract might suppress Ca9-22 cell proliferation by inducing G2 cell cycle arrest. Through gas chromatography-mass spectrometry, the 16 most abundant compounds in the stem extract of N. miranda were tentatively identified. The 10 most abundant compounds in the stem extract of N. miranda were used for docking analysis, and their docking scores were compared. The binding capacity of these compounds was in the order sitosterol > hexadecanoic acid > oleic acid > plumbagin > 2-ethyl-3-methylnaphtho[2,3-b]thiophene-4,9-dione > methyl α-d-galactopyranoside > 3-methoxycatechol > catechol > pyrogallol > hydroxyhydroquinone; thus, sitosterol might exhibit the greatest inhibitory capacity against KpSSB among the selected compounds. Overall, these results may indicate the pharmacological potential of N. miranda for further therapeutic applications.
Collapse
Affiliation(s)
- En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan
| | - Yen-Hua Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Jo-Chi Chung
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|
5
|
Mihailova G, Gashi B, Krastev N, Georgieva K. Acquisition of Freezing Tolerance of Resurrection Species from Gesneriaceae, a Comparative Study. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091893. [PMID: 37176950 PMCID: PMC10180725 DOI: 10.3390/plants12091893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Resurrection plants have the unique ability to restore normal physiological activity after desiccation to an air-dry state. In addition to their desiccation tolerance, some of them, such as Haberlea rhodopensis and Ramonda myconi, are also freezing-tolerant species, as they survive subzero temperatures during winter. Here, we compared the response of the photosynthetic apparatus of two other Gesneriaceae species, Ramonda serbica and Ramonda nathaliae, together with H. rhodopensis, to cold and freezing temperatures. The role of some protective proteins in freezing tolerance was also investigated. The water content of leaves was not affected during cold acclimation but exposure of plants to -10 °C induced dehydration of plants. Freezing stress strongly reduced the quantum yield of PSII photochemistry (Y(II)) and stomatal conductance (gs) on the abaxial leaf side. In addition, the decreased ratio of Fv/Fm suggested photoinhibition or sustained quenching. Freezing-induced desiccation resulted in the inhibition of PSII activity, which was accompanied by increased thermal energy dissipation. In addition, an increase of dehydrins and ELIPs was detected, but the protein pattern differed between species. During recovery, the protein abundance decreased and plants completely recovered their photosynthetic activity. Thus, our results showed that R. serbica, R. nathaliae, and H. rhodopensis survive freezing stress due to some resurrection-linked traits and confirmed their freezing tolerance.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Bekim Gashi
- Department of Biology, Faculty of Mathematical and Natural Sciences, University of Prishtina "Hasan Prishtina", Eqerem Cabej Str No 51, 10020 Prishtina, Kosovo
| | - Nikola Krastev
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
6
|
Paravar A, Maleki Farahani S, Rezazadeh A. Morphological, physiological and biochemical response of L allemantia species to elevated temperature and light duration during seed development. Heliyon 2023; 9:e15149. [PMID: 37123928 PMCID: PMC10133671 DOI: 10.1016/j.heliyon.2023.e15149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 05/02/2023] Open
Abstract
Seed weight, storability, and germinability can depend on maternal plant's environment. However, there is slight information about the effect of light and temperature on seed quality of Lallemantia species. The purpose of this research was to determine the properties of physio-biochemical of maternal plant, seed quality, and seed chemical composition of Lallemantia species (Lallemantia iberica and Lallemantia royleana) under temperature (15 °C, 25 °C, and 35 °C) and photoperiod (8 hd-1, 16 hd-1, and 24 hd-1) maternal plants environment. Increasing temperature and photoperiod caused a reduction in leaf chlorophyll, stomatal movement, total soluble sugar, superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) enzymes activities, and an increment in malondialdehyde (MDA) and hydrogen peroxide (H2O2) content of seeds. However, the highest weight, germination, vigor index, and longevity, seed chemical compositions were obtained in offspring which matured under 25 °C for 16 hd-1. The highest germination, oil, and relative percentage of fatty acids (oleic acid (OA), linoleic acid (LA), and linolenic acid (LNA)) were obtained in L. iberica seeds. On the contrary, longevity, mucilage, and sucrose were more abundant in L. royleana seeds. Overall, this research has clearly shown that temperature and light quality and quantity of maternal plant's environment have an immensely effect on producing of seeds with high-quality. However, it is necessary to investigate the impact of the epigenetic mechanisms of the maternal plant on the offspring in future studies.
Collapse
Affiliation(s)
- Arezoo Paravar
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
| | - Saeideh Maleki Farahani
- Department of Crop Production and Plant Breeding, College of Agriculture, Shahed University, Tehran, Iran
- Corresponding author.
| | - Alireza Rezazadeh
- Department of Plant Protection, College of Agriculture, Shahed University, Tehran, Iran
| |
Collapse
|
7
|
Chen PJ, Lin ES, Su HH, Huang CY. Cytotoxic, Antibacterial, and Antioxidant Activities of the Leaf Extract of Sinningia bullata. PLANTS (BASEL, SWITZERLAND) 2023; 12:859. [PMID: 36840206 PMCID: PMC9967939 DOI: 10.3390/plants12040859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/12/2023]
Abstract
Sinningia bullata is a tuberous member of the flowering plant family Gesneriaceae. Prior to this work, the antibacterial, antioxidant, and cytotoxic properties of S. bullata were undetermined. Here, we prepared different extracts from the leaf, stem, and tuber of S. bullata and investigated their pharmacological activities. The leaf extract of S. bullata, obtained by 100% acetone (Sb-L-A), had the highest total flavonoid content, antioxidation capacity, and cytotoxic and antibacterial activities. Sb-L-A displayed a broad range of antibacterial activities against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. The inhibition zones of Sb-L-A ranged from 8 to 30 mm and were in the following order: S. aureus > E. coli > P. aeruginosa. Incubation of B16F10 melanoma cells with Sb-L-A at a concentration of 80 μg/mL caused deaths at the rate of 96%, reduced migration by 100%, suppressed proliferation and colony formation by 99%, and induced apoptosis, which was observed in 96% of the B16F10 cells. In addition, the cytotoxic activities of Sb-L-A were synergistically enhanced when coacting with the antitumor drug epothilone B. Sb-L-A was also used to determine the cytotoxic effects against 4T1 mammary carcinoma cells. Sb-L-A of 60 μg/mL boosted the distribution of the G2 phase from 1.4% to 24.4% in the B16F10 cells. Accordingly, Sb-L-A might suppress melanoma cell proliferation by inducing G2 cell-cycle arrest. The most abundant compounds in Sb-L-A were identified using gas chromatography-mass spectrometry. Overall, the collective data in this study may indicate the pharmacological potentials of Sb-L-A for possible medical applications.
Collapse
Affiliation(s)
- Pin-Jui Chen
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, Taichung City 403, Taiwan;
| | - Hsin-Hui Su
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan City 717, Taiwan;
| | - Cheng-Yang Huang
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung City 402, Taiwan;
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City 402, Taiwan
| |
Collapse
|