1
|
Maniscalchi A, Benzi Juncos ON, Conde MA, Funk MI, Fermento ME, Facchinetti MM, Curino AC, Uranga RM, Alza NP, Salvador GA. New insights on neurodegeneration triggered by iron accumulation: Intersections with neutral lipid metabolism, ferroptosis, and motor impairment. Redox Biol 2024; 71:103074. [PMID: 38367511 PMCID: PMC10879836 DOI: 10.1016/j.redox.2024.103074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 02/03/2024] [Indexed: 02/19/2024] Open
Abstract
Brain iron accumulation constitutes a pathognomonic indicator in several neurodegenerative disorders. Metal accumulation associated with dopaminergic neuronal death has been documented in Parkinson's disease. Through the use of in vivo and in vitro models, we demonstrated that lipid dysregulation manifests as a neuronal and glial response during iron overload. In this study, we show that cholesterol content and triacylglycerol (TAG) hydrolysis were strongly elevated in mice midbrain. Lipid cacostasis was concomitant with the loss of dopaminergic neurons, astrogliosis and elevated expression of α-synuclein. Exacerbated lipid peroxidation and markers of ferroptosis were evident in the midbrain from mice challenged with iron overload. An imbalance in the activity of lipolytic and acylation enzymes was identified, favoring neutral lipid hydrolysis, and consequently reducing TAG and cholesteryl ester levels. Notably, these observed alterations were accompanied by motor impairment in iron-treated mice. In addition, neuronal and glial cultures along with their secretomes were used to gain further insight into the mechanism underlying TAG hydrolysis and cholesterol accumulation as cellular responses to iron accumulation. We demonstrated that TAG hydrolysis in neurons is triggered by astrocyte secretomes. Moreover, we found that the ferroptosis inhibitor, ferrostatin-1, effectively prevents cholesterol accumulation both in neurons and astrocytes. Taken together, these results indicate that lipid disturbances occur in iron-overloaded mice as a consequence of iron-induced oxidative stress and depend on neuron-glia crosstalk. Our findings suggest that developing therapies aimed at restoring lipid homeostasis may lead to specific treatment for neurodegeneration associated with ferroptosis and brain iron accumulation.
Collapse
Affiliation(s)
- Athina Maniscalchi
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - Oriana N Benzi Juncos
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melisa A Conde
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Melania I Funk
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina
| | - María E Fermento
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - María M Facchinetti
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Alejandro C Curino
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Romina M Uranga
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Natalia P Alza
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Química - UNS, Bahía Blanca, Argentina
| | - Gabriela A Salvador
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Camino La Carrindanga Km7 B8000FWB, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina.
| |
Collapse
|
2
|
Xiong Q, Sun H, Wang Y, Xu Q, Zhang Y, Xu M, Zhao Z, Li P, Wu C. Lipid droplet accumulation in Wdr45-deficient cells caused by impairment of chaperone-mediated autophagic degradation of Fasn. Lipids Health Dis 2024; 23:91. [PMID: 38539242 PMCID: PMC10976834 DOI: 10.1186/s12944-024-02088-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/22/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND β-Propeller protein-associated neurodegeneration (BPAN) is a genetic neurodegenerative disease caused by mutations in WDR45. The impairment of autophagy caused by WDR45 deficiency contributes to the pathogenesis of BPAN; however, the pathomechanism of this disease is largely unknown. Lipid dyshomeostasis is involved in neurogenerative diseases, but whether lipid metabolism is affected by Wdr45 deficiency and whether lipid dyshomeostasis contributes to the progression of BPAN are unclear. METHODS We generated Wdr45 knockout SN4741 cell lines using CRISPR‒Cas9-mediated genome editing, then lipid droplets (LDs) were stained using BODIPY 493/503. Chaperone-mediated autophagy was determined by RT-qPCR and western blotting. The expression of fatty acid synthase (Fasn) was detected by western blot in the presence or absence of the lysosomal inhibitor NH4Cl and the CMA activator AR7. The interaction between Fasn and HSC70 was analyzed using coimmunoprecipitation (Co-IP) assay. Cell viability was measured by a CCK-8 kit after treatment with the Fasn inhibitor C75 or the CMA activator AR7. RESULTS Deletion of Wdr45 impaired chaperone-mediated autophagy (CMA), thus leading to lipid droplet (LD) accumulation. Moreover, Fasn can be degraded via CMA, and that defective CMA leads to elevated Fasn, which promotes LD formation. LD accumulation is toxic to cells; however, cell viability was not rescued by Fasn inhibition or CMA activation. Inhibition of Fasn with a low concentration of C75 did not affect cell viability but decreases LD density. CONCLUSIONS These results suggested that Fasn is essential for cell survival but that excessive Fasn leads to LD accumulation in Wdr45 knockout cells.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Huimin Sun
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yanlin Wang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Qian Xu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Yu Zhang
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Mei Xu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Zhonghua Zhao
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Ping Li
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
3
|
Zhong Y, Zeng W, Chen Y, Zhu X. The effect of lipid metabolism on cuproptosis-inducing cancer therapy. Biomed Pharmacother 2024; 172:116247. [PMID: 38330710 DOI: 10.1016/j.biopha.2024.116247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024] Open
Abstract
Cuproptosis provides a new therapeutic strategy for cancer treatment and is thought to have broad clinical application prospects. Nevertheless, some oncological clinical trials have yet to demonstrate favorable outcomes, highlighting the need for further research into the molecular mechanisms underlying cuproptosis in tumors. Cuproptosis primarily hinges on the intracellular accumulation of copper, with lipid metabolism exerting a profound influence on its course. The interaction between copper metabolism and lipid metabolism is closely related to cuproptosis. Copper imbalance can affect mitochondrial respiration and lipid metabolism changes, while lipid accumulation can promote copper uptake and absorption, and inhibit cuproptosis induced by copper. Anomalies in lipid metabolism can disrupt copper homeostasis within cells, potentially triggering cuproptosis. The interaction between cuproptosis and lipid metabolism regulates the occurrence, development, metastasis, chemotherapy drug resistance, and tumor immunity of cancer. Cuproptosis is a promising new target for cancer treatment. However, the influence of lipid metabolism and other factors should be taken into consideration. This review provides a brief overview of the characteristics of the interaction between cuproptosis and lipid metabolism in cancer and analyses potential strategies of applying cuproptosis for cancer treatment.
Collapse
Affiliation(s)
- Yue Zhong
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Wei Zeng
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China
| | - Yongbo Chen
- Rehabilitation College of Gannan Medical University, Ganzhou 341000, China
| | - Xiuzhi Zhu
- School of Basic Medicine, Gannan Medical University, Ganzhou 341000, China.
| |
Collapse
|
4
|
Xia Y, Zhang Y, Sun Y, He L. CCDC127 regulates lipid droplet homeostasis by enhancing mitochondria-ER contacts. Biochem Biophys Res Commun 2023; 683:149116. [PMID: 37864924 DOI: 10.1016/j.bbrc.2023.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/23/2023]
Abstract
Lipid droplets (LDs) are both energy storage and signaling organelles playing important roles in various physiological and pathological conditions. The mitochondria-ER contacts have been implicated in regulating the homeostasis of lipid droplets. However, our knowledge about the molecular mechanism behind this regulation is still limited. In this study, we identified CCDC127, a previously uncharacterized protein, as a new regulator of LDs by enhancing the mitochondria-ER contact sites (MERCS). Knockdown and overexpression of CCDC127 in HeLa cells significantly change the LDs abundance in opposite directions, suggesting that CCDC127 positively regulates the LDs. Additional analysis showed that CCDC127 localizes on the outer membrane of mitochondria through its N-terminus and promotes mitochondria fragmentation. Importantly, knockdown or overexpression of CCDC127 significantly down- or up-regulates, respectively, the formation of MERCS. Further experiments showed that CCDC127 is required to stabilize the MERCS tether protein VAPA. And overexpression or knockdown of VAPA reversed the effects of CCDC127 reduction or overexpression on LDs. Finally, we demonstrated that knocking down CCDC127 in the mesenchymal stem cells reduced their differentiation towards adipocytes. These findings provide a new molecular connection between LD homeostasis and MERCS regulation.
Collapse
Affiliation(s)
- Yuchen Xia
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, China
| | - Yue Zhang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, China
| | - Yuwei Sun
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, China
| | - Li He
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230000, China.
| |
Collapse
|
5
|
Miao G, Wang Y, Wang B, Yu H, Liu J, Pan R, Zhou C, Ning J, Zheng Y, Zhang R, Jin X. Multi-omics analysis reveals hepatic lipid metabolism profiles and serum lipid biomarkers upon indoor relevant VOC exposure. ENVIRONMENT INTERNATIONAL 2023; 180:108221. [PMID: 37742460 DOI: 10.1016/j.envint.2023.108221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023]
Abstract
As a widespread indoor air pollutant, volatile organic compound (VOC) caused various adverse health effects, especial the damage to liver, which has become a growing public concern. However, the current toxic data are intrinsically restricted in the single or major VOC species. Limited knowledge is available regarding toxic effects, biomarkers and underlying mechanisms of real indoor VOC-caused liver damage. Herein, an indoor relevant VOC exposure model was established to evaluate the hepatic adverse outcomes. Machine learning and multi-omics approaches, including liver lipidomic, serum lipidomic and liver transcriptomic, were utilized to uncover the characteristics of liver damage, serum lipid biomarkers, and involved mechanism stimulated by VOC exposure. The result showed that indoor relevant VOC led to the abnormal hepatic lipid metabolism, mainly manifested as a decrease in triacylglycerol (TG) and its precursor substance diacylglycerol (DG), which could be contributed to the occurrence of hepatic adverse outcomes. In terms of serum lipid biomarkers, five lipid biomarkers in serum were uncovered using machine learning to reflect the hepatic lipid disorders induced by VOC. Multi-omics approaches revealed that the upregulated Dgkq disturbed the interconversion of DG and phosphatidic acid (PA), leading to a TG downregulation. The in-depth analysis revealed that VOC down-regulated FoxO transcription factor, contributing to the upregulation of Dgkq. Hence, this study can provide valuable insights into the understanding of liver damage caused by indoor relevant VOC exposure model VOC exposure, from the perspective of multi-omics analysis.
Collapse
Affiliation(s)
- Gan Miao
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Yu Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Baoqiang Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Hongyan Yu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jing Liu
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Ruonan Pan
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Chengying Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yuxin Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China.
| | - Xiaoting Jin
- Department of Occupational Health and Environmental Health, School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
6
|
Flores-Leon M, Outeiro TF. More than meets the eye in Parkinson's disease and other synucleinopathies: from proteinopathy to lipidopathy. Acta Neuropathol 2023; 146:369-385. [PMID: 37421475 PMCID: PMC10412683 DOI: 10.1007/s00401-023-02601-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/10/2023]
Abstract
The accumulation of proteinaceous inclusions in the brain is a common feature among neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease (PD), and dementia with Lewy bodies (DLB). The main neuropathological hallmark of PD and DLB are inclusions, known as Lewy bodies (LBs), enriched not only in α-synuclein (aSyn), but also in lipid species, organelles, membranes, and even nucleic acids. Furthermore, several genetic risk factors for PD are mutations in genes involved in lipid metabolism, such as GBA1, VSP35, or PINK1. Thus, it is not surprising that mechanisms that have been implicated in PD, such as inflammation, altered intracellular and vesicular trafficking, mitochondrial dysfunction, and alterations in the protein degradation systems, may be also directly or indirectly connected through lipid homeostasis. In this review, we highlight and discuss the recent evidence that suggests lipid biology as important drivers of PD, and which require renovated attention by neuropathologists. Particularly, we address the implication of lipids in aSyn accumulation and in the spreading of aSyn pathology, in mitochondrial dysfunction, and in ER stress. Together, this suggests we should broaden the view of PD not only as a proteinopathy but also as a lipidopathy.
Collapse
Affiliation(s)
- Manuel Flores-Leon
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Ciudad de México, Mexico
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Science, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4HH, UK.
- Scientific Employee with an Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| |
Collapse
|
7
|
Ligezka AN, Budhraja R, Nishiyama Y, Fiesel FC, Preston G, Edmondson A, Ranatunga W, Van Hove JLK, Watzlawik JO, Springer W, Pandey A, Morava E, Kozicz T. Interplay of Impaired Cellular Bioenergetics and Autophagy in PMM2-CDG. Genes (Basel) 2023; 14:1585. [PMID: 37628636 PMCID: PMC10454768 DOI: 10.3390/genes14081585] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/25/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Congenital disorders of glycosylation (CDG) and mitochondrial disorders are multisystem disorders with overlapping symptomatology. Pathogenic variants in the PMM2 gene lead to abnormal N-linked glycosylation. This disruption in glycosylation can induce endoplasmic reticulum stress, contributing to the disease pathology. Although impaired mitochondrial dysfunction has been reported in some CDG, cellular bioenergetics has never been evaluated in detail in PMM2-CDG. This prompted us to evaluate mitochondrial function and autophagy/mitophagy in vitro in PMM2 patient-derived fibroblast lines of differing genotypes from our natural history study. We found secondary mitochondrial dysfunction in PMM2-CDG. This dysfunction was evidenced by decreased mitochondrial maximal and ATP-linked respiration, as well as decreased complex I function of the mitochondrial electron transport chain. Our study also revealed altered autophagy in PMM2-CDG patient-derived fibroblast lines. This was marked by an increased abundance of the autophagosome marker LC3-II. Additionally, changes in the abundance and glycosylation of proteins in the autophagy and mitophagy pathways further indicated dysregulation of these cellular processes. Interestingly, serum sorbitol levels (a biomarker of disease severity) and the CDG severity score showed an inverse correlation with the abundance of the autophagosome marker LC3-II. This suggests that autophagy may act as a modulator of biochemical and clinical markers of disease severity in PMM2-CDG. Overall, our research sheds light on the complex interplay between glycosylation, mitochondrial function, and autophagy/mitophagy in PMM2-CDG. Manipulating mitochondrial dysfunction and alterations in autophagy/mitophagy pathways could offer therapeutic benefits when combined with existing treatments for PMM2-CDG.
Collapse
Affiliation(s)
- Anna N. Ligezka
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Rohit Budhraja
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Yurika Nishiyama
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Fabienne C. Fiesel
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Graeme Preston
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew Edmondson
- Department of Pediatrics, Division of Human Genetics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Johan L. K. Van Hove
- Department of Pediatrics, Section of Clinical Genetics and Metabolism, University of Colorado, Aurora, CO 80309, USA
| | - Jens O. Watzlawik
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Wolfdieter Springer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
- Neuroscience PhD Program, Mayo Graduate School of Biomedical Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Systems Biology and Translational Medicine Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biophysics, University of Pecs Medical School, 7624 Pecs, Hungary
| | - Tamas Kozicz
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN 55905, USA
- Department of Anatomy, University of Pecs Medical School, 7624 Pecs, Hungary
| |
Collapse
|