1
|
Wujdi A, Bang G, Amin MHF, Jang Y, Kim HW, Kundu S. Elucidating the Mitogenomic Blueprint of Pomadasys perotaei from the Eastern Atlantic: Characterization and Matrilineal Phylogenetic Insights into Haemulid Grunts (Teleostei: Lutjaniformes). Biochem Genet 2024:10.1007/s10528-024-10941-z. [PMID: 39453547 DOI: 10.1007/s10528-024-10941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The parrot grunt fish, Pomadasys perotaei, has a limited distribution in the Eastern Atlantic Ocean and is an important species in marine capture fisheries across several West African countries. Despite its ecological and economic significance, the mitogenomic information for this species is lacking. This study utilized next-generation sequencing to generate the de novo mitogenome of P. perotaei from Eastern Atlantic. The resulting mitogenome is 16,691 base pairs and includes 13 protein-coding genes (PCGs), 22 transfer RNAs, two ribosomal RNAs, and an AT-rich control region (CR). Most of the PCGs exhibit nonsynonymous (Ka) and synonymous (Ks) substitution rates of less than '1', indicating strong negative selection across haemulid fishes. The control region of Pomadasys species contains four conserved domains, as seen in other teleost's, with polymorphic nucleotides that can be used to study population structures through the amplification of short mitochondrial gene fragments. Additionally, Bayesian phylogenetic analysis based on PCGs revealed a non-monophyletic clustering pattern of Pomadasys within the haemulid matrilineal tree. Overall, the structural characterization and phylogenetic analysis enhance our understanding of the genetic composition and evolutionary history of Pomadasys species from the Indo-West Pacific and Eastern Atlantic Oceans.
Collapse
Affiliation(s)
- Arief Wujdi
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Fishery, National Research and Innovation Agency (BRIN), Cibinong, Bogor, 16912, Republic of Indonesia
| | - Gyurim Bang
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Muhammad Hilman Fu'adil Amin
- Advanced Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia
| | - Yeongju Jang
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
- Institute of Marine Living Modified Organisms, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea.
- Advanced Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya, 60115, Indonesia.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
- International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Kundu S, Kang HE, Go Y, Bang G, Jang Y, Htoo H, Aini S, Kim HW. Mitogenomic Architecture of Atlantic Emperor Lethrinus atlanticus (Actinopterygii: Spariformes): Insights into the Lineage Diversification in Atlantic Ocean. Int J Mol Sci 2024; 25:10700. [PMID: 39409028 PMCID: PMC11476654 DOI: 10.3390/ijms251910700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The evolutionary history of emperors, particularly in the Atlantic and Indo-West Pacific Oceans, remains largely unmapped. This study explores the maternal lineage evolution of Lethrinids by examining the complete mitogenome of Lethrinus atlanticus, which is endemic to the Eastern Atlantic Ocean. Utilizing advanced next-generation sequencing, we found that the mitogenome spans 16,789 base pairs and encompasses 37 genes, including 13 protein-coding genes (PCGs), two ribosomal RNAs, 22 transfer RNAs, and an AT-rich control region (CR). Our analysis indicates a preference for AT base pairs in the L. atlanticus mitogenome (53.10%). Most PCGs begin with the ATG codon, except for COI, which starts with GTG. Relative synonymous codon usage reveals high frequencies for alanine, leucine, proline, serine, and threonine. The ratio of nonsynonymous to synonymous substitutions suggests strong negative selection across all PCGs in Lethrinus species. Most transfer RNAs exhibit typical cloverleaf structures, with the exception of tRNA-serine (GCT), which lacks a dihydrouracil stem. Comparative analysis of conserved sequence blocks across the CRs of three Lethrinus species shows notable differences in length and nucleotide composition. Phylogenetic analysis using concatenated PCGs clearly distinguishes all Lethrinus species, including L. atlanticus, and sheds light on the evolutionary relationships among Spariformes species. The estimated divergence time of approximately 20.67 million years between L. atlanticus and its Indo-West Pacific relatives provides insights into their historical separation and colonization during the late Oligocene. The distribution of Lethrinids may be influenced by ocean currents and ecological factors, potentially leading to their speciation across the Eastern Atlantic and Indo-West Pacific. This study enhances our understanding of the genetic diversity and phylogenetic relationships within Lethrinus species. Further exploration of other emperor fish mitogenomes and comprehensive genomic data could provide vital insights into their genetic makeup, evolutionary history, and environmental adaptability in marine ecosystems globally.
Collapse
Affiliation(s)
- Shantanu Kundu
- Ocean and Fisheries Development International Cooperation Institute, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, College of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Yunji Go
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Gyurim Bang
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Yengju Jang
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hsu Htoo
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Sarifah Aini
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
- Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia
| |
Collapse
|
3
|
Kundu S, Kang HE, Kim AR, Lee SR, Kim EB, Amin MHF, Andriyono S, Kim HW, Kang K. Mitogenomic Characterization and Phylogenetic Placement of African Hind, Cephalopholis taeniops: Shedding Light on the Evolution of Groupers (Serranidae: Epinephelinae). Int J Mol Sci 2024; 25:1822. [PMID: 38339100 PMCID: PMC10855530 DOI: 10.3390/ijms25031822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The global exploration of evolutionary trends in groupers, based on mitogenomes, is currently underway. This research extensively investigates the structure of and variations in Cephalopholis species mitogenomes, along with their phylogenetic relationships, focusing specifically on Cephalopholis taeniops from the Eastern Atlantic Ocean. The generated mitogenome spans 16,572 base pairs and exhibits a gene order analogous to that of the ancestral teleost's, featuring 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and an AT-rich control region. The mitogenome of C. taeniops displays an AT bias (54.99%), aligning with related species. The majority of PCGs in the mitogenome initiate with the start codon ATG, with the exceptions being COI (GTG) and atp6 (TTG). The relative synonymous codon usage analysis revealed the maximum abundance of leucine, proline, serine, and threonine. The nonsynonymous/synonymous ratios were <1, which indicates a strong negative selection among all PCGs of the Cephalopholis species. In C. taeniops, the prevalent transfer RNAs display conventional cloverleaf secondary structures, except for tRNA-serine (GCT), which lacks a dihydrouracil (DHU) stem. A comparative examination of conserved domains and sequence blocks across various Cephalopholis species indicates noteworthy variations in length and nucleotide diversity. Maximum likelihood, neighbor-joining, and Bayesian phylogenetic analyses, employing the concatenated PCGs and a combination of PCGs + rRNAs, distinctly separate all Cephalopholis species, including C. taeniops. Overall, these findings deepen our understanding of evolutionary relationships among serranid groupers, emphasizing the significance of structural considerations in mitogenomic analyses.
Collapse
Affiliation(s)
- Shantanu Kundu
- Institute of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hye-Eun Kang
- Institute of Marine Life Science, Pukyong National University, Busan 48513, Republic of Korea;
| | - Ah Ran Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Soo Rin Lee
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
| | - Eun-Bi Kim
- Ocean Georesources Research Department, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea;
| | - Muhammad Hilman Fu’adil Amin
- Advance Tropical Biodiversity, Genomics, and Conservation Research Group, Department of Biology, Faculty of Science and Technology, Airlangga University, Surabaya 60115, Indonesia;
| | - Sapto Andriyono
- Department of Marine, Faculty of Fisheries and Marine, Airlangga University, Surabaya 60115, Indonesia
| | - Hyun-Woo Kim
- Marine Integrated Biomedical Technology Center, National Key Research Institutes in Universities, Pukyong National University, Busan 48513, Republic of Korea; (A.R.K.); (S.R.L.)
- Department of Marine Biology, Pukyong National University, Busan 48513, Republic of Korea
| | - Kyoungmi Kang
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|