1
|
He Y, Li X, Yang Y, Freitas R, Zhu J, Ji G, Zhang Y. Gabapentin impairs visual development in zebrafish via retinal apoptosis and thyroid disruption. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137299. [PMID: 39842123 DOI: 10.1016/j.jhazmat.2025.137299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Gabapentin (GBP), a pharmaceutical widely used for seizures and neuropathic pain, has emerged as a contaminant in global aquatic environments, raising concerns about its ecological impact. This study investigated the effects of environmentally relevant concentrations of GBP (0, 1, 10, 1000 μg/L) on visual development in zebrafish (Danio rerio). Behavioral assays showed that GBP exposure enhanced light sensitivity, as indicated by a significant increase in total travel distance (TTD) in all exposure groups compared to controls. The 1 μg/L and 1000 μg/L exposure groups demonstrated a 41 % and 37 % increase in TTD, respectively (p < 0.05). Apoptosis assays revealed dose-dependent retinal cell death, with fluorescence intensity rising by 15 % at 1000 μg/L (p < 0.05). Visual acuity, measured through optokinetic response (OKR) tests, decreased significantly across all color stimuli. Angular velocity under white light decreased from 4.0 °/s in controls to 1.6 °/s at 1000 μg/L (p < 0.01) in a dose-dependent manner. Retinal histopathology showed a 17 % increase in ganglion cell layer thickness at 1000 μg/L (p < 0.05) in a dose-dependent manner. Thyroid hormone assays indicated significant reductions in T3 and T4 levels (p < 0.001), with a 22 % increase in the T3/T4 ratio at 1000 μg/L. Gene expression analysis revealed dysregulation in apoptosis (casp3a, ifi27), thyroid (tshr, dio1), and retinal development (atoh7, pax6a) pathways. These findings demonstrate that GBP disrupts visual development in zebrafish through retinal apoptosis and thyroid hormone dysregulation, highlighting the ecological risks posed by pharmaceutical pollutants. GBP exposure increased light-driven locomotor activity, indicating heightened light sensitivity due to apoptosis in the retina. Visual acuity was assessed through the optokinetic response (OKR) test, retinal morphology, and thyroid hormone (TH) levels. Even at concentrations as low as 1 µg/L, GBP exposure led to significant reductions in OKR across various colors, likely due to changes in retinal thickness linked to thyroid hormone disruption. These effects were consistent with alterations in gene expression related to apoptosis, the thyroid system, and retinal development. Our findings enhance understanding of how GBP exposure impairs vision in fish and highlight the need to evaluate the ecological risks of pharmaceutical contaminants in aquatic environments.
Collapse
Affiliation(s)
- Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| | - Xiang Li
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Yan Yang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China
| | - Rosa Freitas
- Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, University of Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal; Department of Biology & CESAM, University of Aveiro, Aveiro 3810193, Portugal
| | - Jiansheng Zhu
- Nanjing University of Chinese Medicine, 138 Xianlin Rd, Nanjing 210023, China
| | - Guixiang Ji
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Yongjun Zhang
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu 211816, China; Sino-Portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu Province 211816, China.
| |
Collapse
|
2
|
Rodwell V, Birchall A, Yoon HJ, Kuht HJ, Norton WHJ, Thomas MG. A novel portable flip-phone based visual behaviour assay for zebrafish. Sci Rep 2024; 14:236. [PMID: 38168485 PMCID: PMC10762252 DOI: 10.1038/s41598-023-51001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
The optokinetic reflex (OKR) serves as a vital index for visual system development in early life, commonly observed within the first six months post-birth in humans. Zebrafish larvae offer a robust and convenient model for OKR studies due to their rapid development and manageable size. Existing OKR assays often involve cumbersome setups and offer limited portability. In this study, we present an innovative OKR assay that leverages the flexible screen of the Samsung Galaxy Z Flip to optimize setup and portability. We conducted paired slow-phase velocity measurements in 5-day post-fertilization (dpf) zebrafish larvae (n = 15), using both the novel flip-phone-based assay and a traditional liquid-crystal display (LCD) arena. Utilizing Bland-Altman plots, we assessed the agreement between the two methods. Both assays were efficacious in eliciting OKR, with eye movement analysis indicating high tracking precision in the flip-phone-based assay. No statistically significant difference was observed in slow-phase velocities between the two assays (p = 0.40). Our findings underscore the feasibility and non-inferiority of the flip-phone-based approach, offering streamlined assembly, enhanced portability, and the potential for cost-effective alternatives. This study contributes to the evolution of OKR assay methodologies, aligning them with emerging research paradigms.
Collapse
Affiliation(s)
- Vanessa Rodwell
- The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, RKCSB, PO Box 65, Leicester, LE2 7LX, UK
| | - Annabel Birchall
- The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, RKCSB, PO Box 65, Leicester, LE2 7LX, UK
| | - Ha-Jun Yoon
- The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, RKCSB, PO Box 65, Leicester, LE2 7LX, UK
| | - Helen J Kuht
- The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, RKCSB, PO Box 65, Leicester, LE2 7LX, UK
| | - William H J Norton
- Department of Genetics and Genome Biology, University of Leicester, Leicester, LE1 7RH, UK
| | - Mervyn G Thomas
- The University of Leicester Ulverscroft Eye Unit, School of Psychology and Vision Sciences, University of Leicester, RKCSB, PO Box 65, Leicester, LE2 7LX, UK.
| |
Collapse
|