1
|
Ó Murchú SC, O'Halloran KD. BREATHE DMD: boosting respiratory efficacy after therapeutic hypoxic episodes in Duchenne muscular dystrophy. J Physiol 2024; 602:3255-3272. [PMID: 38837229 DOI: 10.1113/jp280280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/12/2024] [Indexed: 06/07/2024] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal genetic neuromuscular disorder, characterised by progressive decline in skeletal muscle function due to the secondary consequences of dystrophin deficiency. Weakness extends to the respiratory musculature, and cardiorespiratory failure is the leading cause of death in men with DMD. Intermittent hypoxia has emerged as a potential therapy to counteract ventilatory insufficiency by eliciting long-term facilitation of breathing. Mechanisms of sensory and motor facilitation of breathing have been well delineated in animal models. Various paradigms of intermittent hypoxia have been designed and implemented in human trials culminating in clinical trials in people with spinal cord injury and amyotrophic lateral sclerosis. Application of therapeutic intermittent hypoxia to DMD is considered together with discussion of the potential barriers to progression owing to the complexity of this devastating disease. Notwithstanding the considerable challenges and potential pitfalls of intermittent hypoxia-based therapies for DMD, we suggest it is incumbent on the research community to explore the potential benefits in pre-clinical models. Intermittent hypoxia paradigms should be implemented to explore the proclivity to express respiratory plasticity with the longer-term aim of preserving and potentiating ventilation in pre-clinical models and people with DMD.
Collapse
Affiliation(s)
- Seán C Ó Murchú
- Department of Physiology, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
2
|
Xu B, Magli A, Anugrah Y, Koester SJ, Perlingeiro RCR, Shen W. Nanotopography-responsive myotube alignment and orientation as a sensitive phenotypic biomarker for Duchenne Muscular Dystrophy. Biomaterials 2018; 183:54-66. [PMID: 30149230 PMCID: PMC6239205 DOI: 10.1016/j.biomaterials.2018.08.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 08/20/2018] [Indexed: 01/08/2023]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal genetic disorder currently having no cure. Here we report that culture substrates patterned with nanogrooves and functionalized with Matrigel (or laminin) present an engineered cell microenvironment to allow myotubes derived from non-diseased, less-affected DMD, and severely-affected DMD human induced pluripotent stem cells (hiPSCs) to exhibit prominent differences in alignment and orientation, providing a sensitive phenotypic biomarker to potentially facilitate DMD drug development and early diagnosis. We discovered that myotubes differentiated from myogenic progenitors derived from non-diseased hiPSCs align nearly perpendicular to nanogrooves, a phenomenon not reported previously. We further found that myotubes derived from hiPSCs of a dystrophin-null DMD patient orient randomly, and those from hiPSCs of a patient carrying partially functional dystrophin align approximately 14° off the alignment direction of non-diseased myotubes. Substrates engineered with micron-scale grooves and/or cell adhesion molecules only interacting with integrins all guide parallel myotube alignment to grooves and lose the ability to distinguish different cell types. Disruption of the interaction between the Dystrophin-Associated-Protein-Complex (DAPC) and laminin by heparin or anti-α-dystroglycan antibody IIH6 disenables myotubes to align perpendicular to nanogrooves, suggesting that this phenotype is controlled by the DAPC-mediated cytoskeleton-extracellular matrix linkage.
Collapse
Affiliation(s)
- Bin Xu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alessandro Magli
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yoska Anugrah
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Steven J Koester
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Rita C R Perlingeiro
- Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
3
|
Markossian S, Ang KK, Wilson CG, Arkin MR. Small-Molecule Screening for Genetic Diseases. Annu Rev Genomics Hum Genet 2018; 19:263-288. [PMID: 29799800 DOI: 10.1146/annurev-genom-083117-021452] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic determinants of many diseases, including monogenic diseases and cancers, have been identified; nevertheless, targeted therapy remains elusive for most. High-throughput screening (HTS) of small molecules, including high-content analysis (HCA), has been an important technology for the discovery of molecular tools and new therapeutics. HTS can be based on modulation of a known disease target (called reverse chemical genetics) or modulation of a disease-associated mechanism or phenotype (forward chemical genetics). Prominent target-based successes include modulators of transthyretin, used to treat transthyretin amyloidoses, and the BCR-ABL kinase inhibitor Gleevec, used to treat chronic myelogenous leukemia. Phenotypic screening successes include modulators of cystic fibrosis transmembrane conductance regulator, splicing correctors for spinal muscular atrophy, and histone deacetylase inhibitors for cancer. Synthetic lethal screening, in which chemotherapeutics are screened for efficacy against specific genetic backgrounds, is a promising approach that merges phenotype and target. In this article, we introduce HTS technology and highlight its contributions to the discovery of drugs and probes for monogenic diseases and cancer.
Collapse
Affiliation(s)
- Sarine Markossian
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Kenny K Ang
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Christopher G Wilson
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| | - Michelle R Arkin
- Small Molecule Discovery Center and Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, USA; , , ,
| |
Collapse
|
4
|
Young J, Margaron Y, Fernandes M, Duchemin-Pelletier E, Michaud J, Flaender M, Lorintiu O, Degot S, Poydenot P. MyoScreen, a High-Throughput Phenotypic Screening Platform Enabling Muscle Drug Discovery. SLAS DISCOVERY 2018; 23:790-806. [PMID: 29498891 DOI: 10.1177/2472555218761102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Despite the need for more effective drug treatments to address muscle atrophy and disease, physiologically accurate in vitro screening models and higher information content preclinical assays that aid in the discovery and development of novel therapies are lacking. To this end, MyoScreen was developed: a robust and versatile high-throughput high-content screening (HT/HCS) platform that integrates a physiologically and pharmacologically relevant micropatterned human primary skeletal muscle model with a panel of pertinent phenotypic and functional assays. MyoScreen myotubes form aligned, striated myofibers, and they show nerve-independent accumulation of acetylcholine receptors (AChRs), excitation-contraction coupling (ECC) properties characteristic of adult skeletal muscle and contraction in response to chemical stimulation. Reproducibility and sensitivity of the fully automated MyoScreen platform are highlighted in assays that quantitatively measure myogenesis, hypertrophy and atrophy, AChR clusterization, and intracellular calcium release dynamics, as well as integrating contractility data. A primary screen of 2560 compounds to identify stimulators of myofiber regeneration and repair, followed by further biological characterization of two hits, validates MyoScreen for the discovery and testing of novel therapeutics. MyoScreen is an improvement of current in vitro muscle models, enabling a more predictive screening strategy for preclinical selection of the most efficacious new chemical entities earlier in the discovery pipeline process.
Collapse
|
5
|
Nandi B, Khatra H, Khan PP, Bhadra J, Pattanayak S, Sinha S. Cationic Cytosine Morpholino-Based Transporters: Synthesis and Regulation of Intracellular Localization. ChemistrySelect 2017. [DOI: 10.1002/slct.201700238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Bappaditya Nandi
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Harleen Khatra
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Pragya Paramita Khan
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Jhuma Bhadra
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| | - Sankha Pattanayak
- Department of Chemical and Systems Biology; Stanford University; Stanford, California, CA 94305-5174
| | - Surajit Sinha
- Department of Organic Chemistry; Indian Association for the Cultivation of Science; Jadavpur Kolkata 700032 India
| |
Collapse
|
6
|
Nance ME, Hakim CH, Yang NN, Duan D. Nanotherapy for Duchenne muscular dystrophy. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2017; 10. [PMID: 28398005 DOI: 10.1002/wnan.1472] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 02/09/2017] [Accepted: 03/11/2017] [Indexed: 12/14/2022]
Abstract
Duchenne muscular dystrophy (DMD) is a lethal X-linked childhood muscle wasting disease caused by mutations in the dystrophin gene. Nanobiotechnology-based therapies (such as synthetic nanoparticles and naturally existing viral and nonviral nanoparticles) hold great promise to replace and repair the mutated dystrophin gene and significantly change the disease course. While a majority of DMD nanotherapies are still in early preclinical development, several [such as adeno-associated virus (AAV)-mediated systemic micro-dystrophin gene therapy] are advancing for phase I clinical trials. Recent regulatory approval of Ataluren (a nonsense mutation read-through chemical) in Europe and Exondys51 (an exon-skipping antisense oligonucleotide drug) in the United States shall offer critical insight in how to move DMD nanotherapy to human patients. Progress in novel, optimized nano-delivery systems may further improve emerging molecular therapeutic modalities for DMD. Despite these progresses, DMD nanotherapy faces a number of unique challenges. Specifically, the dystrophin gene is one of the largest genes in the genome while nanoparticles have an inherent size limitation per definition. Furthermore, muscle is the largest tissue in the body and accounts for 40% of the body mass. How to achieve efficient bodywide muscle targeting in human patients with nanomedication remains a significant translational hurdle. New creative approaches in the design of the miniature micro-dystrophin gene, engineering of muscle-specific synthetic AAV capsids, and novel nanoparticle-mediated exon-skipping are likely to result in major breakthroughs in DMD therapy. WIREs Nanomed Nanobiotechnol 2018, 10:e1472. doi: 10.1002/wnan.1472 This article is categorized under: Biology-Inspired Nanomaterials > Protein and Virus-Based Structures Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Michael E Nance
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA
| | - Chady H Hakim
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - N Nora Yang
- National Center for Advancing Translational Sciences, NIH, Rockville, MD, USA
| | - Dongsheng Duan
- Department of Microbiology and Immunology, University of Missouri School of Medicine, Columbia, MO, USA.,Department of Neurology, University of Missouri, Columbia, MO, USA.,Department of Bioengineering, University of Missouri, Columbia, MO, USA.,Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
7
|
Muchiri R, Walker KD. Paclitaxel Biosynthesis: Adenylation and Thiolation Domains of an NRPS TycA PheAT Module Produce Various Arylisoserine CoA Thioesters. Biochemistry 2017; 56:1415-1425. [PMID: 28230972 DOI: 10.1021/acs.biochem.6b01188] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Structure-activity relationship studies show that the phenylisoserinyl moiety of paclitaxel (Taxol) is largely necessary for the effective anticancer activity. Several paclitaxel analogues with a variant isoserinyl side chain have improved pharmaceutical properties versus those of the parent drug. To produce the isoserinyl CoAs as intermediates needed for enzyme catalysis on a semibiosynthetic pathway to paclitaxel analogues, we repurposed the adenylation and thiolation domains (Phe-AT) of a nonribosomal peptide synthetase (TycA) so that they would function as a CoA ligase. Twenty-eight isoserine analogue racemates were synthesized by an established procedure based on the Staudinger [2+2] cycloaddition reaction. Phe-AT converted 16 substituted phenylisoserines, one β-(heteroaryl)isoserine, and one β-(cyclohexyl)isoserine to their corresponding isoserinyl CoAs. We imagine that these CoA thioesters can likely serve as linchpin biosynthetic acyl donors transferred by a 13-O-acyltransferase to a paclitaxel precursor baccatin III to make drug analogues with better efficacy. It was also interesting to find that an active site mutant [Phe-AT (W227S)] turned over 2-pyridylisoserine and the sterically demanding p-methoxyphenylisoserine substrates to their CoA thioesters, while Phe-AT did not. This mutant is promising for further development to make 3-fluoro-2-pyridylisoserinyl CoA, a biosynthetic precursor of the oral pharmaceutical tesetaxel used for gastric cancers.
Collapse
Affiliation(s)
- Ruth Muchiri
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Kevin D Walker
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States.,Department of Biochemistry and Molecular Biology, Michigan State University , East Lansing, Michigan 48824, United States
| |
Collapse
|
8
|
Abstract
Duchenne muscular dystrophy (DMD) is the most common form of muscular dystrophy in childhood. It is caused by mutations of the DMD gene, leading to progressive muscle weakness, loss of independent ambulation by early teens, and premature death due to cardiorespiratory complications. The diagnosis can usually be made after careful review of the history and examination of affected boys presenting with developmental delay, proximal weakness, and elevated serum creatine kinase, plus confirmation by muscle biopsy or genetic testing. Precise characterization of the DMD mutation is important for genetic counseling and individualized treatment. Current standard of care includes the use of corticosteroids to prolong ambulation and to delay the onset of secondary complications. Early use of cardioprotective agents, noninvasive positive pressure ventilation, and other supportive strategies has improved the life expectancy and health-related quality of life for many young adults with DMD. New emerging treatment includes viral-mediated microdystrophin gene replacement, exon skipping to restore the reading frame, and nonsense suppression therapy to allow translation and production of a modified dystrophin protein. Other potential therapeutic targets involve upregulation of compensatory proteins, reduction of the inflammatory cascade, and enhancement of muscle regeneration. So far, data from DMD clinical trials have shown limited success in delaying disease progression; unforeseen obstacles included immune response against the generated mini-dystrophin, inconsistent evidence of dystrophin production in muscle biopsies, and failure to demonstrate a significant improvement in the primary outcome measure, as defined by the 6-minute walk test in some studies. The long-term safety and efficacy of emerging treatments will depend on the selection of appropriate clinical end points and sensitive biomarkers to detect meaningful changes in disease progression. Correction of the underlying mutations using new gene-editing technologies and corticosteroid analogs with better safety profiles offers renewed hope for many individuals with DMD and their families.
Collapse
Affiliation(s)
- Jean K Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
9
|
Nicolson GL, de Mattos GF, Settineri R, Costa C, Ellithorpe R, Rosenblatt S, La Valle J, Jimenez A, Ohta S. Clinical Effects of Hydrogen Administration: From Animal and Human Diseases to Exercise Medicine. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijcm.2016.71005] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Rea IM, Dellet M, Mills KI. Living long and ageing well: is epigenomics the missing link between nature and nurture? Biogerontology 2015; 17:33-54. [PMID: 26133292 DOI: 10.1007/s10522-015-9589-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 06/22/2015] [Indexed: 12/12/2022]
Abstract
Human longevity is a complex trait and increasingly we understand that both genes and lifestyle interact in the longevity phenotype. Non-genetic factors, including diet, physical activity, health habits, and psychosocial factors contribute approximately 50% of the variability in human lifespan with another 25% explained by genetic differences. Family clusters of nonagenarian and centenarian siblings, who show both exceptional age-span and health-span, are likely to have inherited facilitatory gene groups, but also have nine decades of life experiences and behaviours which have interacted with their genetic profiles. Identification of their shared genes is just one small step in the link from genes to their physical and psychological profiles. Behavioural genomics is beginning to demonstrate links to biological mechanisms through regulation of gene expression, which directs the proteome and influences the personal phenotype. Epigenetics has been considered the missing link between nature and nurture. Although there is much that remains to be discovered, this article will discuss some of genetic and environmental factors which appear important in good quality longevity and link known epigenetic mechanisms to themes identified by nonagenarians themselves related to their longevity. Here we suggest that exceptional 90-year old siblings have adopted a range of behaviours and life-styles which have contributed to their ageing-well-phenotype and which link with important public health messages.
Collapse
Affiliation(s)
- Irene Maeve Rea
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK. .,School of Biomedical Sciences, University of Ulster, Coleraine, Northern Ireland, UK.
| | - Margaret Dellet
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast , Belfast, Northern Ireland, UK
| | - Ken I Mills
- School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK.,Centre for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Science, Queens University Belfast, Belfast, Northern Ireland, UK
| | | |
Collapse
|
11
|
Holland A, Henry M, Meleady P, Winkler CK, Krautwald M, Brinkmeier H, Ohlendieck K. Comparative Label-Free Mass Spectrometric Analysis of Mildly versus Severely Affected mdx Mouse Skeletal Muscles Identifies Annexin, Lamin, and Vimentin as Universal Dystrophic Markers. Molecules 2015; 20:11317-44. [PMID: 26102067 PMCID: PMC6272583 DOI: 10.3390/molecules200611317] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/16/2022] Open
Abstract
The primary deficiency in the membrane cytoskeletal protein dystrophin results in complex changes in dystrophic muscles. In order to compare the degree of secondary alterations in differently affected subtypes of skeletal muscles, we have conducted a global analysis of proteome-wide changes in various dystrophin-deficient muscles. In contrast to the highly degenerative mdx diaphragm muscle, which showed considerable alterations in 35 distinct proteins, the spectrum of mildly to moderately dystrophic skeletal muscles, including interosseus, flexor digitorum brevis, soleus, and extensor digitorum longus muscle, exhibited a smaller number of changed proteins. Compensatory mechanisms and/or cellular variances may be responsible for differing secondary changes in individual mdx muscles. Label-free mass spectrometry established altered expression levels for diaphragm proteins associated with contraction, energy metabolism, the cytoskeleton, the extracellular matrix and the cellular stress response. Comparative immunoblotting verified the differences in the degree of secondary changes in dystrophin-deficient muscles and showed that the up-regulation of molecular chaperones, the compensatory increase in proteins of the intermediate filaments, the fibrosis-related increase in collagen levels and the pathophysiological decrease in calcium binding proteins is more pronounced in mdx diaphragm as compared to the less severely affected mdx leg muscles. Annexin, lamin, and vimentin were identified as universal dystrophic markers.
Collapse
Affiliation(s)
- Ashling Holland
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Claudia K Winkler
- Institute of Pathophysiology, University Medicine Greifswald, D-17495 Karlsburg, Germany.
| | - Mirjam Krautwald
- Institute of Pathophysiology, University Medicine Greifswald, D-17495 Karlsburg, Germany.
| | - Heinrich Brinkmeier
- Institute of Pathophysiology, University Medicine Greifswald, D-17495 Karlsburg, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|