1
|
Guadagno AH, Medina SH. The manifold role of octapeptide repeats in prion protein assembly. Pept Sci (Hoboken) 2023; 115:e24303. [PMID: 37153755 PMCID: PMC10162500 DOI: 10.1002/pep2.24303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
Prion protein misfolding is associated with fatal neurodegenerative disorders such as kuru, Creutzfeldt-Jakob disease, and several animal encephalopathies. While the C-terminal 106-126 peptide has been well studied for its role in prion replication and toxicity, the octapeptide repeat (OPR) sequence found within the N-terminal domain has been relatively under explored. Recent findings that the OPR has both local and long-range effects on prion protein folding and assembly, as well as its ability to bind and regulate transition metal homeostasis, highlights the important role this understudied region may have in prion pathologies. This review attempts to collate this knowledge to advance a deeper understanding on the varied physiologic and pathologic roles the prion OPR plays, and connect these findings to potential therapeutic modalities focused on OPR-metal binding. Continued study of the OPR will not only elucidate a more complete mechanistic model of prion pathology, but may enhance knowledge on other neurodegenerative processes underlying Alzheimer's, Parkinson's, and Huntington's diseases.
Collapse
Affiliation(s)
- Amy H. Guadagno
- Nanomedicine, Intercollegiate Degree Program, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Scott H. Medina
- Department of Biomedical Engineering, Pennsylvania State University, University Park, Pennsylvania, USA
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
2
|
Sánchez-González L, Maddox RA, Lewis LC, Blevins JE, Harker EJ, Appleby BS, Person MK, Schonberger LB, Belay ED, DeBolt C, Lofy KH. Human Prion Disease Surveillance in Washington State, 2006-2017. JAMA Netw Open 2020; 3:e2020690. [PMID: 33064135 PMCID: PMC7568199 DOI: 10.1001/jamanetworkopen.2020.20690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
IMPORTANCE Human prion disease surveillance is critical to detect possible cases of variant Creutzfeldt-Jakob disease and other acquired forms of prion disease in the United States. Results are presented here that describe 12 years of surveillance in Washington, the only US state that has reported the presence of classic bovine spongiform encephalopathy, an animal prion disease that has been shown to transmit to humans. OBJECTIVE To describe the current prion disease surveillance system in Washington and the epidemiological and clinical results of surveillance from 2006 through 2017. DESIGN, SETTING, AND PARTICIPANTS This cross-sectional study reports findings from the human prion disease surveillance system in place in Washington state from January 1, 2006, through December 31, 2017. Participants included Washington residents with a clinical suspicion of human prion disease or suggestive test results from the National Prion Disease Pathology Surveillance Center or with prion disease listed as a cause of death on the death certificate. Data for this report were analyzed from June 1, 2016, to July 1, 2020. EXPOSURE Human prion disease diagnosis. MAIN OUTCOMES AND MEASURES The main outcome was incidence of human prion disease cases, including identification of variant Creutzfeldt-Jakob disease. RESULTS A total of 143 human prion disease cases were detected during the study period, none of which met criteria for a variant Creutzfeldt-Jakob disease diagnosis. Among 137 definite or probable cases, 123 (89.8%) occurred in persons aged 55 years or older, with a median age at death of 66 years (range, 38-84 years). Most patients were White (124 [92.5%] among 134 with reported race), and slightly over half were male (70 [51.1%]). The average annual age-adjusted prion disease incidence was 1.5 per million population per year, slightly higher than the national rate of 1.2 per million. A total of 99 cases (69.2%) were confirmed by neuropathology. Sporadic prion disease was the most common diagnosis, in 134 cases (93.7%), followed by familial prion disease in 8 cases (5.6%). One iatrogenic prion disease case (0.7%) was also reported. CONCLUSIONS AND RELEVANCE The findings of this cross-sectional study suggest that demographic characteristics of patients with prion disease in Washington are consistent with national findings. The slightly higher incidence rate may be due to the state's enhanced surveillance activities, including close collaboration with key partners and educational efforts targeted toward health care providers. Results indicate that surveillance will continue to be beneficial for monitoring epidemiological trends, facilitating accurate diagnoses, and detecting variant Creutzfeldt-Jakob disease or other emerging human prion disease cases.
Collapse
Affiliation(s)
- Liliana Sánchez-González
- Washington State Department of Health, Shoreline
- Dengue Branch, Division of Vector Borne Diseases, Centers for Disease Control and Prevention, San Juan, Puerto Rico
| | - Ryan A. Maddox
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Janis E. Blevins
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio
- Hyland Software, Westlake, Ohio
| | - Elizabeth J. Harker
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
- Texas Department of State Health Services, Austin
| | - Brian S. Appleby
- National Prion Disease Pathology Surveillance Center, Case Western Reserve University, Cleveland, Ohio
| | - Marissa K. Person
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Lawrence B. Schonberger
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ermias D. Belay
- Division of High-Consequence Pathogens and Pathology, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Chas DeBolt
- Washington State Department of Health, Shoreline
| | | |
Collapse
|
3
|
Choi SH, Cho KJ, Yun SH, Jin B, Lee HY, Ro SW, Kim DY, Ahn SH, Han KH, Park JY. HKR3 regulates cell cycle through the inhibition of hTERT in hepatocellular carcinoma cell lines. J Cancer 2020; 11:2442-2452. [PMID: 32201515 PMCID: PMC7066026 DOI: 10.7150/jca.39380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 01/20/2020] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma is a malignant disease with improved hepatic regeneration and survival, and is activated by human telomere transferase (hTERT). hTERT is expressed during early fetal development and switched off in most adult tissues, but it becomes reactivated in HCC. The exact mechanism regulating these expression changes remains unknown during HCC progress. We evaluated the relationship between hTERT expression and human kruppel-related 3 (HKR3) and cell cycle-related factors in HCC cell lines. Following transfection for hTERT knockdown and HKR3 overexpression, proteomic and transcriptomic analyses related to hTERT were performed using liquid chromatography/mass spectrometry (LC/MS) and RNA sequencing (RNAseq) in HCC cell lines. The expression levels of hTERT, HKR3, and cell cycle-related factors were measured using western blotting, and tumor growth were evaluated via cell proliferation and cell cycle assays. Transcriptomic and proteomic analyses showed that HKR3, hTERT and cyclin-dependent kinase inhibitor 2A (CDKN2A) were correlated. Up-regulation of HKR3 expression decreased hTERT and cyclin activation and suppressed the G1/S phase of the cell cycle through CDKN2A activation. Our results suggest that HKR3 induced regulation of cell cycle through hTERT inhibition and CDKN2A activation. Our results will facilitate further exploration of the pathways regulating human telomerase activity in HCC cell lines.
Collapse
Affiliation(s)
- Sung Hoon Choi
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Joo Cho
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sung Ho Yun
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea
| | - Bora Jin
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ha Young Lee
- Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea.,Bio-Analysis Science, University of Science & Technology (UST), 217 Gajeong-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Simon W Ro
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Do Young Kim
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hoon Ahn
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kwang-Hyub Han
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,Division of Bioconvergence Analysis, Drug & Disease Target Team, Korea Basic Science Institute (KBSI), Cheongju, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jun Yong Park
- Yonsei Liver Center, Yonsei University College of Medicine, Seoul, Republic of Korea.,BK21 plus project for medical science, Yonsei University College of Medicine, Seoul, Republic of Korea.,Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Pesarrodona M, Jauset T, Díaz‐Riascos ZV, Sánchez‐Chardi A, Beaulieu M, Seras‐Franzoso J, Sánchez‐García L, Baltà‐Foix R, Mancilla S, Fernández Y, Rinas U, Schwartz S, Soucek L, Villaverde A, Abasolo I, Vázquez E. Targeting Antitumoral Proteins to Breast Cancer by Local Administration of Functional Inclusion Bodies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900849. [PMID: 31559131 PMCID: PMC6755514 DOI: 10.1002/advs.201900849] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/11/2019] [Indexed: 05/07/2023]
Abstract
Two structurally and functionally unrelated proteins, namely Omomyc and p31, are engineered as CD44-targeted inclusion bodies produced in recombinant bacteria. In this unusual particulate form, both types of protein materials selectively penetrate and kill CD44+ tumor cells in culture, and upon local administration, promote destruction of tumoral tissue in orthotropic mouse models of human breast cancer. These findings support the concept of bacterial inclusion bodies as versatile protein materials suitable for application in chronic diseases that, like cancer, can benefit from a local slow release of therapeutic proteins.
Collapse
Affiliation(s)
- Mireia Pesarrodona
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
| | - Toni Jauset
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Zamira V. Díaz‐Riascos
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Alejandro Sánchez‐Chardi
- Departament de Biologia EvolutivaEcologia i Ciències AmbientalsFacultat de BiologiaUniversitat de BarcelonaAv. Diagonal 64308028BarcelonaSpain
| | - Marie‐Eve Beaulieu
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
| | - Joaquin Seras‐Franzoso
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Sánchez‐García
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ricardo Baltà‐Foix
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Sandra Mancilla
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Yolanda Fernández
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Ursula Rinas
- Leibniz University of HannoverTechnical Chemistry and Life ScienceCallinstr. 530167HannoverGermany
- Helmholtz Centre for Infection ResearchInhoffenstraße 738124BraunschweigGermany
| | - Simó Schwartz
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Laura Soucek
- Vall d'Hebron Institute of Oncology (VHIO)Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Peptomyc S.L.Edifici CellexHospital Vall d'Hebron08035BarcelonaSpain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)08010BarcelonaSpain
- Department of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Antonio Villaverde
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| | - Ibane Abasolo
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Functional Validation & Preclinical ResearchCIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
- Drug Delivery & Targeting CIBBIM‐NanomedicineVall d'Hebron Institut de Recerca (VHIR)Universitat Autònoma de Barcelona08035BarcelonaSpain
| | - Esther Vázquez
- Institut de Biotecnologia i de BiomedicinaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER‐BBN)C/ Monforte de Lemos 3‐528029MadridSpain
- Departament de Genètica i de MicrobiologiaUniversitat Autònoma de BarcelonaBellaterra08193BarcelonaSpain
| |
Collapse
|
5
|
Allison WT, DuVal MG, Nguyen-Phuoc K, Leighton PLA. Reduced Abundance and Subverted Functions of Proteins in Prion-Like Diseases: Gained Functions Fascinate but Lost Functions Affect Aetiology. Int J Mol Sci 2017; 18:E2223. [PMID: 29064456 PMCID: PMC5666902 DOI: 10.3390/ijms18102223] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/12/2022] Open
Abstract
Prions have served as pathfinders that reveal many aspects of proteostasis in neurons. The recent realization that several prominent neurodegenerative diseases spread via a prion-like mechanism illuminates new possibilities for diagnostics and therapeutics. Thus, key proteins in Alzheimer Disease and Amyotrophic lateral sclerosis (ALS), including amyloid-β precursor protein, Tau and superoxide dismutase 1 (SOD1), spread to adjacent cells in their misfolded aggregated forms and exhibit template-directed misfolding to induce further misfolding, disruptions to proteostasis and toxicity. Here we invert this comparison to ask what these prion-like diseases can teach us about the broad prion disease class, especially regarding the loss of these key proteins' function(s) as they misfold and aggregate. We also consider whether functional amyloids might reveal a role for subverted protein function in neurodegenerative disease. Our synthesis identifies SOD1 as an exemplar of protein functions being lost during prion-like protein misfolding, because SOD1 is inherently unstable and loses function in its misfolded disease-associated form. This has under-appreciated parallels amongst the canonical prion diseases, wherein the normally folded prion protein, PrPC, is reduced in abundance in fatal familial insomnia patients and during the preclinical phase in animal models, apparently via proteostatic mechanisms. Thus while template-directed misfolding and infectious properties represent gain-of-function that fascinates proteostasis researchers and defines (is required for) the prion(-like) diseases, loss and subversion of the functions attributed to hallmark proteins in neurodegenerative disease needs to be integrated into design towards effective therapeutics. We propose experiments to uniquely test these ideas.
Collapse
Affiliation(s)
- W Ted Allison
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Michèle G DuVal
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Kim Nguyen-Phuoc
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Medical Genetics, University of Alberta, Edmonton, AB T6G 2M8, Canada.
| | - Patricia L A Leighton
- Centre for Prions & Protein Folding Disease, University of Alberta, Edmonton, AB T6G 2M8, Canada.
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
6
|
Tikhodeyev ON, Tarasov OV, Bondarev SA. Allelic variants of hereditary prions: The bimodularity principle. Prion 2017; 11:4-24. [PMID: 28281926 PMCID: PMC5360123 DOI: 10.1080/19336896.2017.1283463] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 01/04/2017] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Modern biology requires modern genetic concepts equally valid for all discovered mechanisms of inheritance, either "canonical" (mediated by DNA sequences) or epigenetic. Applying basic genetic terms such as "gene" and "allele" to protein hereditary factors is one of the necessary steps toward these concepts. The basic idea that different variants of the same prion protein can be considered as alleles has been previously proposed by Chernoff and Tuite. In this paper, the notion of prion allele is further developed. We propose the idea that any prion allele is a bimodular hereditary system that depends on a certain DNA sequence (DNA determinant) and a certain epigenetic mark (epigenetic determinant). Alteration of any of these 2 determinants may lead to establishment of a new prion allele. The bimodularity principle is valid not only for hereditary prions; it seems to be universal for any epigenetic hereditary factor.
Collapse
Affiliation(s)
- Oleg N. Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Oleg V. Tarasov
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- Saint-Petersburg Scientific Center of RAS, Saint-Petersburg, Russia
| | - Stanislav A. Bondarev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg, Russia
- The Laboratory of Amyloid Biology, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
7
|
Gambin Y, Polinkovsky M, Francois B, Giles N, Bhumkar A, Sierecki E. Confocal Spectroscopy to Study Dimerization, Oligomerization and Aggregation of Proteins: A Practical Guide. Int J Mol Sci 2016; 17:ijms17050655. [PMID: 27144560 PMCID: PMC4881481 DOI: 10.3390/ijms17050655] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/15/2016] [Accepted: 04/20/2016] [Indexed: 12/25/2022] Open
Abstract
Protein self-association is a key feature that can modulate the physiological role of proteins or lead to deleterious effects when uncontrolled. Protein oligomerization is a simple way to modify the activity of a protein, as the modulation of binding interfaces allows for self-activation or inhibition, or variation in the selectivity of binding partners. As such, dimerization and higher order oligomerization is a common feature in signaling proteins, for example, and more than 70% of enzymes have the potential to self-associate. On the other hand, protein aggregation can overcome the regulatory mechanisms of the cell and can have disastrous physiological effects. This is the case in a number of neurodegenerative diseases, where proteins, due to mutation or dysregulation later in life, start polymerizing and often fibrillate, leading to the creation of protein inclusion bodies in cells. Dimerization, well-defined oligomerization and random aggregation are often difficult to differentiate and characterize experimentally. Single molecule “counting” methods are particularly well suited to the study of self-oligomerization as they allow observation and quantification of behaviors in heterogeneous conditions. However, the extreme dilution of samples often causes weak complexes to dissociate, and rare events can be overlooked. Here, we discuss a straightforward alternative where the principles of single molecule detection are used at higher protein concentrations to quantify oligomers and aggregates in a background of monomers. We propose a practical guide for the use of confocal spectroscopy to quantify protein oligomerization status and also discuss about its use in monitoring changes in protein aggregation in drug screening assays.
Collapse
Affiliation(s)
- Yann Gambin
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Mark Polinkovsky
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Bill Francois
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Nichole Giles
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Akshay Bhumkar
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| | - Emma Sierecki
- EMBL Australia Node in Single Molecule Sciences, School of Medical Science, the University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|