1
|
Kumar M, Tibocha-Bonilla JD, Füssy Z, Lieng C, Schwenck SM, Levesque AV, Al-Bassam MM, Passi A, Neal M, Zuniga C, Kaiyom F, Espinoza JL, Lim H, Polson SW, Allen LZ, Zengler K. Mixotrophic growth of a ubiquitous marine diatom. SCIENCE ADVANCES 2024; 10:eado2623. [PMID: 39018398 PMCID: PMC466952 DOI: 10.1126/sciadv.ado2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Understanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in global carbon dioxide levels. Here, we present a genome-scale metabolic model (iMK1961) for Cylindrotheca closterium, an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. iMK1961 represents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. With iMK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. Comparing model predictions with Tara Oceans transcriptomics data unraveled C. closterium's metabolism in situ. Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our findings highlight C. closterium's metabolic flexibility and its potential role in global carbon cycling.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Chloe Lieng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sarah M. Schwenck
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alice V. Levesque
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mahmoud M. Al-Bassam
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maxwell Neal
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Farrah Kaiyom
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Josh L. Espinoza
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Way, La Jolla, CA 92037, USA
| | - Hyungyu Lim
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Ave., Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Lisa Zeigler Allen
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Way, La Jolla, CA 92037, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Bhattacharjya R, Tyagi R, Rastogi S, Ulmann L, Tiwari A. Response of varying combined nutrients on biomass and biochemical composition of marine diatoms Chaetoceros gracilis and Thalassiosira weissflogii. BIORESOURCE TECHNOLOGY 2024; 394:130274. [PMID: 38160848 DOI: 10.1016/j.biortech.2023.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Marine diatoms have high adaptability and are known to accumulate lipids under nutrient stress conditions. The present study involves determining the effect of varying macro and micronutrients on growth kinetics and metabolite production of oleaginous marine diatoms, Thalassiosira weissflogii and Chaetoceros gracilis. The results highlighted that C. gracilis and T. weissflogii showed maximum biomass yield of 0.86 ± 0.06 g/L and 0.76 ± 0.01 g/L in the 2f and f supplemented medium respectively. A 2.5-fold increase in cellular lipid content was recorded in the 2f culture setup of both strains ranging from 20 % to 26.7 % (w/w). The study also reveals that high eutrophic nutrient media (f, 2f and 4f) triggered biomass productivity as well as total protein and carbohydrate content in both strains. Thus, providing a reproducible insight of trophic flexibility of diatoms, concomitant with the increment in multiple commercially valuable products.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Subha Rastogi
- CSIR-National Botanical Research Institute, 436, Pratap Marg, Lucknow 226001, Uttar, India; CSIR-National Institute of Science Communication and Policy Research, New Delhi, India Pradesh, India
| | - Lionel Ulmann
- Laboratoire BiOSSE: Biologie des Organismes, Stress, Santé, Environnement, IUT Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
3
|
Launay H, Avilan L, Gérard C, Parsiegla G, Receveur-Brechot V, Gontero B, Carriere F. Location of the photosynthetic carbon metabolism in microcompartments and separated phases in microalgal cells. FEBS Lett 2023; 597:2853-2878. [PMID: 37827572 DOI: 10.1002/1873-3468.14754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/04/2023] [Accepted: 09/22/2023] [Indexed: 10/14/2023]
Abstract
Carbon acquisition, assimilation and storage in eukaryotic microalgae and cyanobacteria occur in multiple compartments that have been characterised by the location of the enzymes involved in these functions. These compartments can be delimited by bilayer membranes, such as the chloroplast, the lumen, the peroxisome, the mitochondria or monolayer membranes, such as lipid droplets or plastoglobules. They can also originate from liquid-liquid phase separation such as the pyrenoid. Multiple exchanges exist between the intracellular microcompartments, and these are reviewed for the CO2 concentration mechanism, the Calvin-Benson-Bassham cycle, the lipid metabolism and the cellular energetic balance. Progress in microscopy and spectroscopic methods opens new perspectives to characterise the molecular consequences of the location of the proteins involved, including intrinsically disordered proteins.
Collapse
Affiliation(s)
- Hélène Launay
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Luisana Avilan
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | - Cassy Gérard
- Aix Marseille Univ, CNRS, BIP, UMR7281, Marseille, France
| | | | | | | | | |
Collapse
|
4
|
Sidorowicz A, Fais G, Casula M, Borselli M, Giannaccare G, Locci AM, Lai N, Orrù R, Cao G, Concas A. Nanoparticles from Microalgae and Their Biomedical Applications. Mar Drugs 2023; 21:352. [PMID: 37367677 DOI: 10.3390/md21060352] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/28/2023] Open
Abstract
Over the years, microalgae have been a source of useful compounds mainly used as food and dietary supplements. Recently, microalgae have been used as a source of metabolites that can participate in the synthesis of several nanoparticles through inexpensive and environmentally friendly routes alternative to chemical synthesis. Notably, the occurrence of global health threats focused attention on the microalgae application in the medicinal field. In this review, we report the influence of secondary metabolites from marine and freshwater microalgae and cyanobacteria on the synthesis of nanoparticles that were applied as therapeutics. In addition, the use of isolated compounds on the surface of nanoparticles to combat diseases has also been addressed. Although studies have proven the beneficial effect of high-value bioproducts on microalgae and their potential in medicine, there is still room for understanding their exact role in the human body and translating lab-based research into clinical trials.
Collapse
Affiliation(s)
- Agnieszka Sidorowicz
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Fais
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Mattia Casula
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Massimiliano Borselli
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Grecia of Catanzaro, Viale Europa, 88100 Catanzaro, Italy
| | - Antonio Mario Locci
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Nicola Lai
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Roberto Orrù
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Giacomo Cao
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| | - Alessandro Concas
- Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, 09123 Cagliari, Italy
| |
Collapse
|
5
|
Singh PK, Saxena A, Tyagi R, Sindhu R, Binod P, Tiwari A. Biomass valorization of agriculture wastewater grown freshwater diatom Nitzschia sp. for metabolites, antibacterial activity, and biofertilizer. BIORESOURCE TECHNOLOGY 2023; 377:128976. [PMID: 36990328 DOI: 10.1016/j.biortech.2023.128976] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/24/2023] [Accepted: 03/25/2023] [Indexed: 06/19/2023]
Abstract
The sustainable utilization of agricultural wastewater is a major global challenge. This study evaluated the impact of agricultural fertilizer on the biomass potential of Nitzschia sp. for metabolite production, antibacterial activity, and slow release biofertilizer. Cultivation of Nitzschia sp. in agriculture wastewater (0.5 mg ml-1) exhibited maximum cell density (12×105 cells ml-1), protein content (10.0 mg g-1), and lipid content (14.96%). Carbohydrate and phenol content increases in a dose-dependent manner with 8.27 mg g-1 and 2.05 mg g-1 at a concentration of 2 mg ml-1 respectively. There was a 2.1-fold increment in chrysolaminarin content. Both gram-negative and gram-positive bacteria were susceptible to the antibacterial activity of the biomass. The effects of using diatom biomass as a biofertilizer were evaluated on the growth of periwinkle plants, which showed significant improvements in leaf development, branching at an early stage, flowering, and a marked increase in shoot length. Diatom biorefinery holds immense potential in addressing agriculture wastewater recycling and sustainable generation of high-value compounds.
Collapse
Affiliation(s)
- Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
6
|
Kryvenda A, Tischner R, Steudel B, Griehl C, Armon R, Friedl T. Testing for terrestrial and freshwater microalgae productivity under elevated CO 2 conditions and nutrient limitation. BMC PLANT BIOLOGY 2023; 23:27. [PMID: 36635620 PMCID: PMC9837994 DOI: 10.1186/s12870-023-04042-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Microalgae CO2 fixation results in the production of biomass rich in high-valuable products, such as fatty acids and carotenoids. Enhanced productivity of valuable compounds can be achieved through the microalgae's ability to capture CO2 efficiently from sources of high CO2 contents, but it depends on the species. Culture collections of microalgae offer a wide variety of defined strains. However, an inadequate understanding of which groups of microalgae and from which habitats they originate offer high productivity under increased CO2 concentrations hampers exploiting microalgae as a sustainable source in the bioeconomy. RESULTS A large variety of 81 defined algal strains, including new green algal isolates from various terrestrial environments, were studied for their growth under atmospheres with CO2 levels of 5-25% in air. They were from a pool of 200 strains that had been pre-selected for phylogenetic diversity and high productivity under ambient CO2. Green algae from terrestrial environments exhibited enhanced growth up to 25% CO2. In contrast, in unicellular red algae and stramenopile algae, which originated through the endosymbiotic uptake of a red algal cell, growth at CO2 concentrations above 5% was suppressed. While terrestrial stramenopile algae generally tolerated such CO2 concentrations, their counterparts from marine phytoplankton did not. The tests of four new strains in liquid culture revealed enhanced biomass and chlorophyll production under elevated CO2 levels. The 15% CO2 aeration increased their total carotenoid and fatty acid contents, which were further stimulated when combined with the starvation of macronutrients, i.e., less with phosphate and more with nitrogen-depleted culture media. CONCLUSION Green algae originating from terrestrial environments, Chlorophyceae and Trebouxiophyceae, exhibit enhanced productivity of carotenoids and fatty acids under elevated CO2 concentrations. This ability supports the economic and sustainable production of valuable compounds from these microalgae using inexpensive sources of high CO2 concentrations, such as industrial exhaust fumes.
Collapse
Affiliation(s)
- Anastasiia Kryvenda
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
- Present address: Staatliche Betriebsgesellschaft für Umwelt und Landwirtschaft, 01683 Nossen, Germany
| | - Rudolf Tischner
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
| | - Bastian Steudel
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
- Present address: Department of Health and Environmental Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou, 215123 Jiangsu Province China
| | - Carola Griehl
- Department of Applied Biosciences and Process Technology, Competence Center Algal Biotechnology, Anhalt University of Applied Sciences, 06366 Köthen, Germany
| | - Robert Armon
- Technion-Israel Institute of Technology, Faculty of Civil and Environmental Engineering, 32000 Haifa, Israel
| | - Thomas Friedl
- Albrecht-von-Haller-Institute for Plant Sciences, Department of Experimental Phycology and Culture Collection of Algae (SAG), University of Göttingen, Nikolausberger Weg 18, 37073 Göttingen, Germany
| |
Collapse
|
7
|
Saxena A, Mishra B, Sindhu R, Binod P, Tiwari A. Nutrient acclimation in benthic diatoms with adaptive laboratory evolution. BIORESOURCE TECHNOLOGY 2022; 351:126955. [PMID: 35272038 DOI: 10.1016/j.biortech.2022.126955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The growth of marine diatom algaeChaetoceros gracilisandThalassiosira weissflogiiin agricultural fertilizers and additional carbon sources were evaluated. The main objective behind the study was to increase the growth and productivity of the diatom acclimatized under adaptive laboratory culture conditions. In optimized conditions,C.gracilisshowed the highest cell density in NPK (202.5 ± 2.6 × 105 cells mL-1), maximum carbohydrate (212.8 ± 4.0 mg g-1) and protein (133.9 ± 1.5 mg g-1) in urea. In contrast,T.weissflogiishowed the highest cell density in glycerol (148.2 ± 2.5x105 cells mL-1), maximum carbohydrate in glycerol (273.7 ± 3.3 mg g-1), and protein in sucrose (126.2 ± 0.7 mg g-1). Lipid content was maximum in glycerol (73.4 ± 0.6%) and glucose (39.7 ± 0.2%) in C. gracilisand T. weissflogii respectively. Increased pigment production and chrysolaminarin concentration were obtained in both marine species. The study highlights the importance of adaptive laboratory evolution as an promising tool in enhancing productivity in diatom algae.
Collapse
Affiliation(s)
- Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Bharti Mishra
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam - 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR- National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India.
| |
Collapse
|
8
|
Saxena A, Mishra B, Tiwari A. Mass cultivation of marine diatoms using local salts and its impact on growth and productivity. BIORESOURCE TECHNOLOGY 2022; 352:127128. [PMID: 35398539 DOI: 10.1016/j.biortech.2022.127128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/02/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Diatoms are of great interest for many biotechnological applications. The present study highlights the comparative analysis for mass cultivation under the effect of seawater made from table salt (TS), rock salt (RS), and synthetic seawater in the presence of normal silica and induction coupled plasma (ICP) nanosilica (Nano Si) for inducing diatom growth. Out of all the test formulations, RS-f/2 Nano Si showed the best results with maximum cell density (3.16x107±0.04 and 3.24x107±0.05 cells mL-1), carbohydrate (403.0±3.4 and 398.0±8.1 mg g-1), and chrysolaminarin yield (66.2±5.5 and 49.3±5.1 mg g-1) in both Chaetoceros gracilis and Thalassiosira weissflogii respectively. The presence of a rich pigment profile and lipids further highlights the importance of TS and RS for cost-effective mass culturing. Results reveal that mass cultivation of marine diatoms with TS and RS in the presence of nanosilica not only reduces costs but also enhances metabolite production.
Collapse
Affiliation(s)
- Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Bharti Mishra
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India.
| |
Collapse
|
9
|
Tashyreva D, Simpson A, Prokopchuk G, Škodová-Sveráková I, Butenko A, Hammond M, George EE, Flegontova O, Záhonová K, Faktorová D, Yabuki A, Horák A, Keeling PJ, Lukeš J. Diplonemids – A Review on “New“ Flagellates on the Oceanic Block. Protist 2022; 173:125868. [DOI: 10.1016/j.protis.2022.125868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/26/2022] [Accepted: 02/28/2022] [Indexed: 11/15/2022]
|
10
|
Castro-Ferreira C, Gomes-Dias JS, Ferreira-Santos P, Pereira RN, Vicente AA, Rocha CM. Phaeodactylum tricornutum extracts as structuring agents for food applications: Physicochemical and functional properties. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
Hao X, Chen W, Amato A, Jouhet J, Maréchal E, Moog D, Hu H, Jin H, You L, Huang F, Moosburner M, Allen AE, Gong Y. Multiplexed CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. THE NEW PHYTOLOGIST 2022; 233:1797-1812. [PMID: 34882804 DOI: 10.1111/nph.17911] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Long-chain acyl-CoA synthetases (LACS) play diverse and fundamentally important roles in lipid metabolism. While their functions have been well established in bacteria, yeast and plants, the mechanisms by which LACS isozymes regulate lipid metabolism in unicellular oil-producing microalgae, including the diatom Phaeodactylum tricornutum, remain largely unknown. In P. tricornutum, a family of five genes (ptACSL1-ptACSL5) encodes LACS activities. We generated single lacs knockout/knockdown mutants using multiplexed CRISPR/Cas9 method, and determined their substrate specificities towards different fatty acids (FAs) and subcellular localisations. ptACSL3 is localised in the mitochondria and its disruption led to compromised growth and reduced triacylglycerol (TAG) content when cells were bubbled with air. The ptACSL3 mutants showed altered FA profiles in two galactoglycerolipids and phosphatidylcholine (PC) with significantly reduced distribution of 16:0 and 16:1. ptACSL5 is localised in the peroxisome and its knockdown resulted in reduced growth rate and altered molecular species of PC and TAG, indicating a role in controlling the composition of acyl-CoAs for lipid synthesis. Our work demonstrates the potential of generating gene knockout mutants with the mutation of large fragment deletion using multiplexed CRISPR/Cas9 and provides insight into the functions of LACS isozymes in lipid metabolism in the oleaginous microalgae.
Collapse
Affiliation(s)
- Xiahui Hao
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire et Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut National de la Recherche Agronomique, Université Grenoble Alpes, UMR 5168, Grenoble, F-38041, France
| | - Daniel Moog
- Laboratory for Cell Biology, Philipps-University Marburg, Marburg, D-35032, Germany
| | - Hanhua Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Hu Jin
- Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Lingjie You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Mark Moosburner
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Andrew E Allen
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92093, USA
- J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA, 92037, USA
| | - Yangmin Gong
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
12
|
Chen J, Yang J, Du H, Aslam M, Wang W, Chen W, Li T, Liu Z, Liu X. Laminarin, a Major Polysaccharide in Stramenopiles. Mar Drugs 2021; 19:576. [PMID: 34677475 PMCID: PMC8541152 DOI: 10.3390/md19100576] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 01/09/2023] Open
Abstract
During the processes of primary and secondary endosymbiosis, different microalgae evolved to synthesis different storage polysaccharides. In stramenopiles, the main storage polysaccharides are β-1,3-glucan, or laminarin, in vacuoles. Currently, laminarin is gaining considerable attention due to its application in the food, cosmetic and pharmaceuticals industries, and also its importance in global biogeochemical cycles (especially in the ocean carbon cycle). In this review, the structures, composition, contents, and bioactivity of laminarin were summarized in different algae. It was shown that the general features of laminarin are species-dependence. Furthermore, the proposed biosynthesis and catabolism pathways of laminarin, functions of key genes, and diel regulation of laminarin were also depicted and comprehensively discussed for the first time. However, the complete pathways, functions of genes, and diel regulatory mechanisms of laminarin require more biomolecular studies. This review provides more useful information and identifies the knowledge gap regarding the future studies of laminarin and its applications.
Collapse
Affiliation(s)
- Jichen Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (J.C.); (H.D.); (M.A.); (W.W.); (W.C.); (T.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Jianchao Yang
- Yantai Academy of Agricultural Sciences, Yantai 265500, China;
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (J.C.); (H.D.); (M.A.); (W.W.); (W.C.); (T.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Muhmmad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (J.C.); (H.D.); (M.A.); (W.W.); (W.C.); (T.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Wanna Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (J.C.); (H.D.); (M.A.); (W.W.); (W.C.); (T.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (J.C.); (H.D.); (M.A.); (W.W.); (W.C.); (T.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (J.C.); (H.D.); (M.A.); (W.W.); (W.C.); (T.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| | - Zhengyi Liu
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, Institute of Marine Sciences, Shantou University, Shantou 515063, China; (J.C.); (H.D.); (M.A.); (W.W.); (W.C.); (T.L.)
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 510000, China
| |
Collapse
|
13
|
Saxena A, Marella TK, Singh PK, Tiwari A. Indoor mass cultivation of marine diatoms for biodiesel production using induction plasma synthesized nanosilica. BIORESOURCE TECHNOLOGY 2021; 332:125098. [PMID: 33845321 DOI: 10.1016/j.biortech.2021.125098] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
In this work, two benthic marine diatoms Chaetoceros sp. and Thalassiosira sp. were grown in modified f/2 medium in which normal silica was replaced with inductively coupled plasma (ICP) nanosilica for indoor mass cultivation and its impact on growth, lipid content, lipid quality and metabolite production were monitored. Results indicate thatunder mass cultivation using ICP nano silica medium, Thalassiosirasp. reached 3.6 and Chaetoceros sp. reached 3.2-fold higher cell density compared to normal Si medium. The primary metabolite production and total lipid content was higher in Chaetoceros sp. (44.33 ± 2.51% DCW) compared to Thalassiosira sp. (29.66 ± 1.52% DCW). In mass cultivation, ICP synthesized nanosilica powder was effective in enhancing the cell density, production of metabolites, pigments, and lipids in the marine diatoms studied. This is the first report on the use of ICP nanosilica in carrying out indoor mass cultivation of marine diatom isolates as potential biodiesel and biomolecule feedstocks.
Collapse
Affiliation(s)
- Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Thomas Kiran Marella
- Algae Biomass and Energy System R&D Center (ABES), Tennodai, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Pankaj Kumar Singh
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh 201301, India.
| |
Collapse
|
14
|
Yang R, Wei D, Xie J. Diatoms as cell factories for high-value products: chrysolaminarin, eicosapentaenoic acid, and fucoxanthin. Crit Rev Biotechnol 2020; 40:993-1009. [DOI: 10.1080/07388551.2020.1805402] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Runqing Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Dong Wei
- School of Food Science and Engineering, South China University of Technology, Guangzhou, People’s Republic of China
| | - Jun Xie
- Key Laboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, Chinese Academy of Fishery Sciences Pearl River Fisheries Research Institute, Guangzhou, People’s Republic of China
| |
Collapse
|
15
|
Sethi D, Butler TO, Shuhaili F, Vaidyanathan S. Diatoms for Carbon Sequestration and Bio-Based Manufacturing. BIOLOGY 2020; 9:E217. [PMID: 32785088 PMCID: PMC7464044 DOI: 10.3390/biology9080217] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/12/2022]
Abstract
Carbon dioxide (CO2) is a major greenhouse gas responsible for climate change. Diatoms, a natural sink of atmospheric CO2, can be cultivated industrially in autotrophic and mixotrophic modes for the purpose of CO2 sequestration. In addition, the metabolic diversity exhibited by this group of photosynthetic organisms provides avenues to redirect the captured carbon into products of value. These include lipids, omega-3 fatty acids, pigments, antioxidants, exopolysaccharides, sulphated polysaccharides, and other valuable metabolites that can be produced in environmentally sustainable bio-manufacturing processes. To realize the potential of diatoms, expansion of our knowledge of carbon supply, CO2 uptake and fixation by these organisms, in conjunction with ways to enhance metabolic routing of the fixed carbon to products of value is required. In this review, current knowledge is explored, with an evaluation of the potential of diatoms for carbon capture and bio-based manufacturing.
Collapse
Affiliation(s)
- Deepak Sethi
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Thomas O. Butler
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| | - Faqih Shuhaili
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
- School of Bioprocess Engineering, Universiti Malaysia Perlis (UniMAP), Arau 02600, Perlis, Malaysia
| | - Seetharaman Vaidyanathan
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield S1 3JD, UK; (F.S.); (S.V.)
| |
Collapse
|
16
|
Launay H, Huang W, Maberly SC, Gontero B. Regulation of Carbon Metabolism by Environmental Conditions: A Perspective From Diatoms and Other Chromalveolates. FRONTIERS IN PLANT SCIENCE 2020; 11:1033. [PMID: 32765548 PMCID: PMC7378808 DOI: 10.3389/fpls.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
Diatoms belong to a major, diverse and species-rich eukaryotic clade, the Heterokonta, within the polyphyletic chromalveolates. They evolved as a result of secondary endosymbiosis with one or more Plantae ancestors, but their precise evolutionary history is enigmatic. Nevertheless, this has conferred them with unique structural and biochemical properties that have allowed them to flourish in a wide range of different environments and cope with highly variable conditions. We review the effect of pH, light and dark, and CO2 concentration on the regulation of carbon uptake and assimilation. We discuss the regulation of the Calvin-Benson-Bassham cycle, glycolysis, lipid synthesis, and carbohydrate synthesis at the level of gene transcripts (transcriptomics), proteins (proteomics) and enzyme activity. In contrast to Viridiplantae where redox regulation of metabolic enzymes is important, it appears to be less common in diatoms, based on the current evidence, but regulation at the transcriptional level seems to be widespread. The role of post-translational modifications such as phosphorylation, glutathionylation, etc., and of protein-protein interactions, has been overlooked and should be investigated further. Diatoms and other chromalveolates are understudied compared to the Viridiplantae, especially given their ecological importance, but we believe that the ever-growing number of sequenced genomes combined with proteomics, metabolomics, enzyme measurements, and the application of novel techniques will provide a better understanding of how this important group of algae maintain their productivity under changing conditions.
Collapse
Affiliation(s)
- Hélène Launay
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
| | - Wenmin Huang
- BIP, Aix Marseille Univ CNRS, BIP UMR 7281, Marseille, France
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan, China
| | - Stephen C. Maberly
- UK Centre for Ecology & Hydrology, Lake Ecosystems Group, Lancaster Environment Centre, Lancaster, United Kingdom
| | | |
Collapse
|
17
|
Marella TK, López-Pacheco IY, Parra-Saldívar R, Dixit S, Tiwari A. Wealth from waste: Diatoms as tools for phycoremediation of wastewater and for obtaining value from the biomass. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:137960. [PMID: 32408422 DOI: 10.1016/j.scitotenv.2020.137960] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/13/2020] [Accepted: 03/13/2020] [Indexed: 06/11/2023]
Abstract
Diatoms are a type of microalgae with diverse capabilities which make them useful for multiple applications. The abundance of diatoms in water bodies facilitates the removal of pollutants from wastewater originating from different industries, such as agriculture and other anthropogenic sources. The unique photosynthetic, cellular and metabolic characteristics of diatoms allows them to utilize pollutants like nitrate, iron, phosphate, molybdenum, silica, and heavy metals, such as copper, cadmium, chromium, lead, etc., which make diatoms a good option for wastewater treatment. In addition, the biomass produced by diatoms growth on wastewaters has diverse applications and can, therefore, be valuable. This review focusses on the unique capabilities of diatoms for wastewater remediation and the capture of carbon dioxide, concomitant with the generation of valuable products. Diatom biorefinery can be a sustainable solution to wastewater management, and the biomass obtained from treatment can be turned into biofuels, biofertilizers, nutritional supplements for animal production, and used for pharmaceutical applications containing bioactive compounds like EPA, DHA and pigments such as fucoxanthin.
Collapse
Affiliation(s)
- Thomas Kiran Marella
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru 502 324, Telangana State, India
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, CP 64849 Monterrey, N.L., Mexico
| | - Sreenath Dixit
- International Crop Research Institute for Semi-arid Tropics (ICRISAT), Patancheru 502 324, Telangana State, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201 313, India.
| |
Collapse
|