1
|
Braz Pires M, Kougioumoutzis K, Norder S, Dimopoulos P, Strid A, Panitsa M. The future of plant diversity within a Mediterranean endemism centre: Modelling the synergistic effects of climate and land-use change in Peloponnese, Greece. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174622. [PMID: 38992359 DOI: 10.1016/j.scitotenv.2024.174622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/06/2024] [Indexed: 07/13/2024]
Abstract
Climate- and land-use change stand as primary threats to terrestrial biodiversity. Yet, their synergistic impacts on species distributions remain poorly understood. To address this knowledge gap, we conducted the first-ever comprehensive species distribution analysis on an entire regional endemism centre within an eastern Mediterranean country, incorporating dynamic land-use/land-cover change data together with climate change scenarios. Specifically, we apply species distribution modelling and spatial data analysis techniques to compare the individual and synergistic effects of these environmental drivers on the endemic vascular flora of Peloponnese, focusing on potential range contractions, altitudinal shifts, and habitat fragmentation levels. Moreover, we identify fine-scale present and potential future endemism hotspots within our study area, incorporating taxonomic and phylogenetic information. Overall, we aim to enhance our current understanding of endemism patterns and contribute to the development of future-proof conservation strategies for safeguarding Greece's endangered endemic flora. The integration of land-use change projections with climate change yielded less severe impacts compared to the effects anticipated when considering climatic variables alone. Most taxa are expected to undergo significant range declines and nearly half might experience increased habitat fragmentation, due to the synergistic effects of climate- and land-use change. We identified endemism hotspots, which are concentrated in or along the main Peloponnesian mountain massifs. However, our predictions indicate that areas presently recognized as endemism hotspots will undergo a concerning area decline, across all future scenarios considered in this study. Our findings highlight the importance of including dynamic land-use variables alongside climatic predictors when projecting species distributions under global change. Moreover, we showed that endemism hotspots are not static and considering their potential geographic shifts is paramount to delineate effective forward-looking conservation strategies.
Collapse
Affiliation(s)
- Mariana Braz Pires
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | | | - Sietze Norder
- Copernicus Institute of Sustainable Development, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands.
| | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece.
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece.
| |
Collapse
|
2
|
Kougioumoutzis K, Constantinou I, Panitsa M. Rising Temperatures, Falling Leaves: Predicting the Fate of Cyprus's Endemic Oak under Climate and Land Use Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:1109. [PMID: 38674518 PMCID: PMC11053427 DOI: 10.3390/plants13081109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/28/2024]
Abstract
Endemic island species face heightened extinction risk from climate-driven shifts, yet standard models often underestimate threat levels for those like Quercus alnifolia, an iconic Cypriot oak with pre-adaptations to aridity. Through species distribution modelling, we investigated the potential shifts in its distribution under future climate and land-use change scenarios. Our approach uniquely combines dispersal constraints, detailed soil characteristics, hydrological factors, and anticipated soil erosion data, offering a comprehensive assessment of environmental suitability. We quantified the species' sensitivity, exposure, and vulnerability to projected changes, conducting a preliminary IUCN extinction risk assessment according to Criteria A and B. Our projections uniformly predict range reductions, with a median decrease of 67.8% by the 2070s under the most extreme scenarios. Additionally, our research indicates Quercus alnifolia's resilience to diverse erosion conditions and preference for relatively dry climates within a specific annual temperature range. The preliminary IUCN risk assessment designates Quercus alnifolia as Critically Endangered in the future, highlighting the need for focused conservation efforts. Climate and land-use changes are critical threats to the species' survival, emphasising the importance of comprehensive modelling techniques and the urgent requirement for dedicated conservation measures to safeguard this iconic species.
Collapse
Affiliation(s)
| | | | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (K.K.); (I.C.)
| |
Collapse
|
3
|
Goula K, Constantinidis T. Anthemissect.Hiorthia (Asteraceae) on Kriti Island, Greece: high ploidy levels and a new species. PHYTOKEYS 2023; 229:113-129. [PMID: 37485009 PMCID: PMC10359916 DOI: 10.3897/phytokeys.229.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/02/2023] [Indexed: 07/25/2023]
Abstract
A morphological and karyological investigation of the Anthemissect.Hiorthia representatives of Kriti (Greece) revealed that three different species are found on the island, all endemic, and each characterised by a different ploidy level based on the haploid series of x = 9. Anthemisabrotanifolia, the species with the widest distribution, is tetraploid with 2n = 4x = 36. A.samariensis, a local endemic of the Lefka Ori, was found being decaploid, with 2n = 10x = 90, the highest number ever recorded in Anthemis. The recently discovered population on Mt. Kedros (south-central Kriti) is morphologically distinct from all the Anthemis entities growing on Kriti; it also differs from the variable and widespread A.cretica group. It is here described as a new species, A.pasiphaes Goula & Constantinidis. It is a hexaploid, with 2n = 6x = 54. All chromosome numbers are reported for the first time. Polyploidy might have acted as a reproductive barrier among these perennial species, complementing isolation by spatial distance and evolutionary divergence. Further, it might have contributed adaptation advantages to these three predominately mountain species.
Collapse
Affiliation(s)
- Katerina Goula
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, GreeceNational and Kapodistrian University of AthensAthensGreece
| | - Theophanis Constantinidis
- Section of Ecology & Systematics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, GreeceNational and Kapodistrian University of AthensAthensGreece
| |
Collapse
|
4
|
Kougioumoutzis K, Trigas P, Tsakiri M, Kokkoris IP, Koumoutsou E, Dimopoulos P, Tzanoudakis D, Iatrou G, Panitsa M. Climate and Land-Cover Change Impacts and Extinction Risk Assessment of Rare and Threatened Endemic Taxa of Chelmos-Vouraikos National Park (Peloponnese, Greece). PLANTS (BASEL, SWITZERLAND) 2022; 11:3548. [PMID: 36559660 PMCID: PMC9784511 DOI: 10.3390/plants11243548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/04/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Chelmos-Vouraikos National Park is a floristic diversity and endemism hotspot in Greece and one of the main areas where Greek endemic taxa, preliminary assessed as critically endangered and threatened under the IUCN Criteria A and B, are mainly concentrated. The climate and land-cover change impacts on rare and endemic species distributions is more prominent in regional biodiversity hotspots. The main aims of the current study were: (a) to investigate how climate and land-cover change may alter the distribution of four single mountain endemics and three very rare Peloponnesian endemic taxa of the National Park via a species distribution modelling approach, and (b) to estimate the current and future extinction risk of the aforementioned taxa based on the IUCN Criteria A and B, in order to investigate the need for designing an effective plant micro-reserve network and to support decision making on spatial planning efforts and conservation research for a sustainable, integrated management. Most of the taxa analyzed are expected to continue to be considered as critically endangered based on both Criteria A and B under all land-cover/land-use scenarios, GCM/RCP and time-period combinations, while two, namely Alchemilla aroanica and Silene conglomeratica, are projected to become extinct in most future climate change scenarios. When land-cover/land-use data were included in the analyses, these negative effects were less pronounced. However, Silene conglomeratica, the rarest mountain endemic found in the study area, is still expected to face substantial range decline. Our results highlight the urgent need for the establishment of micro-reserves for these taxa.
Collapse
Affiliation(s)
| | - Panayiotis Trigas
- Laboratory of Systematic Botany, Department of Crop Science, Agricultural University of Athens, 11855 Athens, Greece
| | - Maria Tsakiri
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Ioannis P. Kokkoris
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Eleni Koumoutsou
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Dimitris Tzanoudakis
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Gregoris Iatrou
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Maria Panitsa
- Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Yang X, Zhang W, Qin F, Yu J, Xue T, Huang Y, Xu W, Wu J, Smets EF, Yu S. Biodiversity priority areas and conservation strategies for seed plants in China. FRONTIERS IN PLANT SCIENCE 2022; 13:962609. [PMID: 36035703 PMCID: PMC9412182 DOI: 10.3389/fpls.2022.962609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
China is known for its abundant plant resources, but biodiversity conservation faces unprecedented challenges. To provide feasible suggestions for sustainable conservation, we used the species richness algorithm and complementary algorithm to study distribution patterns of 34,082 seed plants based on 1,007,196 county-level distribution records. We reconstructed a phylogenetic tree for 95.35% of species and estimated the spatial phylogenetics, followed by correlation analyses between different distribution patterns. We identified 264 counties concentrated in southern and south-western mountainous areas as hotspots which covered 10% of the land area of China and harbored 85.22% of the Chinese seed plant species. The biodiversity conservation priorities we identified were highly representative as we have considered multiple conservation indicators. We evaluated the conservation effectiveness and gaps in the network of nature reserves and identified 31.44, 32.95, and 9.47%, respectively, of the hotspot counties as gaps in the national nature reserves, provincial nature reserves and both together, with respectively 55.77, 61.53, and 28.94% of the species. Analysis of the species composition showed there were a large number of threatened and endemic species occurring in the nature reserves' gaps. The conservation gaps need to be filled by establishing new nature reserves or national parks, especially in south-western China, and more attentions should be paid to strengthen the conservation of specific plant taxa due to the apparent mismatches between different distribution patterns.
Collapse
Affiliation(s)
- Xudong Yang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wendi Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Qin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianghong Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Forestry, Guizhou University, Guiyang, China
| | - Tiantian Xue
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yunfeng Huang
- Guangxi Institute of Traditional Medical and Pharmaceutical Sciences, Nanning, China
| | - Weibin Xu
- Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain, Guangxi Institute of Botany, Guangxi Zhuangzu Autonomous Region and Chinese Academy of Sciences, Guilin, China
| | - Jianyong Wu
- Centre for Biodiversity Conservation and Biosafety, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, China
| | - Erik F. Smets
- Naturalis Biodiversity Centre, Leiden, Netherlands
- Institute of Biology Leiden, Leiden University, Leiden, Netherlands
- Ecology, Evolution and Biodiversity Conservation, KU Leuven, Leuven, Belgium
| | - Shengxiang Yu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Climate Change Impacts and Extinction Risk Assessment of Nepeta Representatives (Lamiaceae) in Greece. SUSTAINABILITY 2022. [DOI: 10.3390/su14074269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The ongoing climate change has already left its imprint on species distributions, with rare, endemic species being more threatened. These changes are more prominent in regional biodiversity hotspots, such as Greece, which is already facing the short term impacts of human induced climate change. Greek flora hosts numerous endemic medicinal and aromatic plant taxa (MAPs), which are economically important and provide integral ecosystem services. The genus Nepeta is one of the largest Lamiaceae genera, containing several MAPs, yet, despite its taxonomical and economical significance, it remains vastly understudied in Greece. We explore the effects of climate change on the range of the Greek endemic Nepeta MAPs, via a species distribution models (SDMs) approach in an ensemble modeling framework, using soil, topographical and bioclimatic variables as predictors in three different time steps. By doing so, we attempt to estimate the current and future extinction risk of these taxa and to locate their current and future species richness hotspots in Greece. The taxa analyzed are expected to experience severe range retractions, with minor intraspecific variation across all time steps (p > 0.05), driven mainly by soil- and aridity-related variables. The extinction risk status of only one taxon is predicted to worsen in the future, while all other taxa will remain threatened. Current species richness hotspots are mainly located in southern Greece and are projected to shift both altitudinally and latitudinally over time (p < 0.01).
Collapse
|
7
|
Assessing Climate Change Impacts on Island Bees: The Aegean Archipelago. BIOLOGY 2022; 11:biology11040552. [PMID: 35453751 PMCID: PMC9030098 DOI: 10.3390/biology11040552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 11/17/2022]
Abstract
Pollinators’ climate change impact assessments focus mainly on mainland regions. Thus, we are unaware how island species might fare in a rapidly changing world. This is even more pressing in the Mediterranean Basin, a global biodiversity hotspot. In Greece, a regional pollinator hotspot, climate change research is in its infancy and the insect Wallacean shortfall still remains unaddressed. In a species distribution modelling framework, we used the most comprehensive occurrence database for bees in Greece to locate the bee species richness hotspots in the Aegean, and investigated whether these might shift in the future due to climate change and assessed the Natura 2000 protected areas network effectiveness. Range contractions are anticipated for most taxa, becoming more prominent over time. Species richness hotspots are currently located in the NE Aegean and in highly disturbed sites. They will shift both altitudinally and latitudinally in the future. A small proportion of these hotspots are currently included in the Natura 2000 protected areas network and this proportion is projected to decrease in the coming decades. There is likely an extinction debt present in the Aegean bee communities that could result to pollination network collapse. There is a substantial conservation gap in Greece regarding bees and a critical re-assessment of the established Greek protected areas network is needed, focusing on areas identified as bee diversity hotspots over time.
Collapse
|
8
|
Climate-Change Impacts on the Southernmost Mediterranean Arctic-Alpine Plant Populations. SUSTAINABILITY 2021. [DOI: 10.3390/su132413778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human-induced climate- and land-use change have been affecting biogeographical and biodiversity patterns for the past two centuries all over the globe, resulting in increased extinction and biotic homogenization rates. High mountain ecosystems are more sensitive to these changes, which have led to physiological and phenological shifts, as well as to ecosystem processes’ deformation. Glacial relicts, such as arctic-alpine taxa, are sensitive indicators of the effects of global warming and their rear-edge populations could include warm-adapted genotypes that might prove—conservation-wise—useful in an era of unprecedented climate regimes. Despite the ongoing thermophilization in European and Mediterranean summits, it still remains unknown how past and future climate-change might affect the distributional patterns of the glacial relict, arctic-alpine taxa occurring in Greece, their European southernmost distributional limit. Using species distribution models, we investigated the impacts of past and future climate changes on the arctic-alpine taxa occurring in Greece and identified the areas comprising arctic-alpine biodiversity hotspots in Greece. Most of these species will be faced with severe range reductions in the near future, despite their innate resilience to a multitude of threats, while the species richness hotspots will experience both altitudinal and latitudinal shifts. Being long-lived perennials means that there might be an extinction-debt present in these taxa, and a prolonged stability phase could be masking the deleterious effects of climate change on them. Several ex situ conservation measures (e.g., seed collection, population augmentation) should be taken to preserve the southernmost populations of these rare arctic-alpine taxa and a better understanding of their population genetics is urgently needed.
Collapse
|
9
|
Panitsa M, Kokkoris IP, Kougioumoutzis K, Kontopanou A, Bazos I, Strid A, Dimopoulos P. Linking Taxonomic, Phylogenetic and Functional Plant Diversity with Ecosystem Services of Cliffs and Screes in Greece. PLANTS 2021; 10:plants10050992. [PMID: 34067537 PMCID: PMC8156371 DOI: 10.3390/plants10050992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/09/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022]
Abstract
Sparsely vegetated habitats of cliffs and screes act as refugia for many regional and local endemic specialized plant taxa most of which have evolved precisely for that type of habitat. The interplay between taxonomic, phylogenetic, and functional plant diversity on rock and scree habitats of extreme environmental conditions, enlightens the relations of plant communities and ecosystems and facilitates management planning for the conservation of biodiversity and ecosystem services. The identification of biodiversity patterns and hotspots (taxonomic, phylogenetic, and functional) contributes to the integration of the ecosystem services (ES) approach for the mapping and assessment of ecosystems and their services (MAES) implementation in Greece and the creation of thematic maps based on the MAES reporting format. The overlap among the protected areas’ network revealed that almost all areas of cliffs and screes of medium, high, and very high taxonomic and phylogenetic plant endemism are included in the Natura 2000 area network. The results of this study provide the baseline information for ES assessments at sparsely vegetated land of cliffs and screes. Our results contribute to the implementation of certain indicators of the national set of MAES indicators in Greece such as (a) floristic diversity and (b) microrefugia of endemic diversity and support of decision-making.
Collapse
Affiliation(s)
- Maria Panitsa
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
- Correspondence: (M.P.); (P.D.)
| | - Ioannis P. Kokkoris
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
| | - Konstantinos Kougioumoutzis
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece;
| | - Anna Kontopanou
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
| | - Ioannis Bazos
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15784 Athens, Greece;
| | | | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (K.K.); (A.K.)
- Correspondence: (M.P.); (P.D.)
| |
Collapse
|
10
|
Hammoud C, Kougioumoutzis K, Rijsdijk KF, Simaiakis SM, Norder SJ, Foufopoulos J, Georgopoulou E, Van Loon EE. Past connections with the mainland structure patterns of insular species richness in a continental-shelf archipelago (Aegean Sea, Greece). Ecol Evol 2021; 11:5441-5458. [PMID: 34026019 PMCID: PMC8131802 DOI: 10.1002/ece3.7438] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022] Open
Abstract
Recent research in island biogeography has highlighted the important role of late Quaternary sea-level fluctuations in shaping biogeographic patterns in insular systems but focused on oceanic systems. Through this study, we aim investigate how late Quaternary sea-level fluctuations shaped species richness patterns in continental-shelf island systems. Focusing on the Aegean archipelago, we first compiled maps of the area's geography using published data, under three sea-level stands: (a) current; (b) median sea-level over the last nine glacial-interglacial cycles (MSL); and (c) Last Glacial Maximum (LGM). We gathered taxon-island occurrences for multiple chorotypes of angiosperms, butterflies, centipedes, and reptiles. We investigated the impact of present-day and past geographic settings on chorological groups by analyzing island species-area relationships (ISARs) and using generalized linear mixed models (GLMMs) selection based on multiple metrics of goodness of fit. Our results confirm that the Aegean's geography has changed dramatically since the LGM, whereas the MSL only modestly differs from the present configuration. Apart for centipedes, paleogeographic changes affected both native and endemic species diversity through altering connections between land-bridge islands and the mainland. On land-bridge islands, we detected over-representation of native species and under-representation of endemics. Unlike oceanic islands, sea-level-driven increase of isolation and area contraction did not strongly shape patterns of species richness. Furthermore, the LGM configurations rather than the MSL configuration shaped patterns of endemic species richness. This suggests that even short episodes of increased connectivity with continental populations are sufficient to counteract the genetic differentiation of insular populations. On the other hand, the over-representation of native nonendemic species on land-bridge islands reflected MSL rather than LGM mainland connections. Our study shows that in terms of processes affecting species richness patterns, continental archipelagos differ fundamentally from oceanic systems because episodic connections with the mainland have profound effects on the biota of land-bridge islands.
Collapse
Affiliation(s)
- Cyril Hammoud
- Invertebrate UnitDepartment of BiologyRoyal Museum for Central AfricaTervurenBelgium
- Limnology UnitDepartment of BiologyGhent UniversityGhentBelgium
| | - Konstantinos Kougioumoutzis
- Department of BiologySection of Ecology and TaxonomyNational & Kapodistrian University of AthensAthensGreece
| | - Kenneth F. Rijsdijk
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Sietze J. Norder
- Leiden University Centre for LinguisticsLeiden UniversityLeidenThe Netherlands
| | | | | | - Emiel E. Van Loon
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
11
|
Conservation Genetics of Four Critically Endangered Greek Endemic Plants: A Preliminary Assessment. DIVERSITY 2021. [DOI: 10.3390/d13040152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The Mediterranean basin constitutes one of the largest global biodiversity hotspots, hosting more than 11,000 endemic plants, and it is recognised as an area with a high proportion of threatened taxa. Nevertheless, only a tiny fraction of the threatened Mediterranean endemics have their genetic diversity assessed, and we are unaware if and how climate change might impact their conservation status. This is even more pronounced in Eastern Mediterranean countries with a rich endemic flora, such as Greece, which hosts a large portion of the plant taxa assessed at the European level under the IUCN criteria. Using inter simple sequence repeats (ISSR) markers and species distribution models, we analysed the genetic diversity and investigated the impacts of climate change on four critically endangered and extremely narrow and rare Greek island endemic plants, namely Aethionema retsina, Allium iatrouinum, Convolvulus argyrothamnos, and Saponaria jagelii. All four species are facing intense anthropogenic threats and display moderate genetic diversity (uHe: 0.254–0.322), while climate change is expected to have a profound impact on their range size during the coming decades. A combination of in- and ex-situ measures, such as population reinforcement and seed bank conservation, are urgently needed in order to preserve these highly threatened and rare Greek endemics.
Collapse
|
12
|
Kougioumoutzis K, Kokkoris IP, Panitsa M, Strid A, Dimopoulos P. Extinction Risk Assessment of the Greek Endemic Flora. BIOLOGY 2021; 10:195. [PMID: 33806693 PMCID: PMC7999807 DOI: 10.3390/biology10030195] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/24/2023]
Abstract
Human-induced biodiversity decline has been on the rise for the past 250 years, due to various causes. What is equally troubling, is that we are unaware which plants are threatened and where they occur. Thus, we are far from reaching Aichi Biodiversity Target 2, i.e., assessing the extinction risk of most species. To that end, based on an extensive occurrence dataset, we performed an extinction risk assessment according to the IUCN Criteria A and B for all the endemic plant taxa occurring in Greece, one of the most biodiverse countries in Europe, in a phylogenetically-informed framework and identified the areas needing conservation prioritization. Several of the Greek endemics are threatened with extinction and fourteen endemics need to be prioritized, as they are evolutionary distinct and globally endangered. Mt. Gramos is identified as the most important conservation hotspot in Greece. However, a significant portion of the identified conservation hotspots is not included in any designated Greek protected area, meaning that the Greek protected areas network might need to be at least partially redesigned. In the Anthropocene era, where climate and land-use change are projected to alter biodiversity patterns and may force many species to extinction, our assessment provides the baseline for future conservation research, ecosystem services maintenance, and might prove crucial for the timely, systematic and effective aversion of plant extinctions in Greece.
Collapse
Affiliation(s)
- Konstantinos Kougioumoutzis
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
| | - Ioannis P. Kokkoris
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | - Maria Panitsa
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | | | - Panayotis Dimopoulos
- Laboratory of Botany, Department of Biology, Division of Plant Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| |
Collapse
|
13
|
An Orchid in Retrograde: Climate-Driven Range Shift Patterns of Ophrys helenae in Greece. PLANTS 2021; 10:plants10030470. [PMID: 33801443 PMCID: PMC8000551 DOI: 10.3390/plants10030470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 11/16/2022]
Abstract
Climate change is regarded as one of the most important threats to plants. Already species around the globe are showing considerable latitudinal and altitudinal shifts. Helen's bee orchid (Ophrys helenae), a Balkan endemic with a distribution center in northwestern Greece, is reported to be expanding east and southwards. Since this southeastern movement goes against the usual expectations, we investigated via Species Distribution Modelling, whether this pattern is consistent with projections based on the species' response to climate change. We predicted the species' future distribution based on three different climate models in two climate scenarios. We also explored the species' potential distribution during the Last Interglacial and the Last Glacial Maximum. O. helenae is projected to shift mainly southeast and experience considerable area changes. The species is expected to become extinct in the core of its current distribution, but to establish a strong presence in the mid- and high-altitude areas of the Central Peloponnese, a region that could have provided shelter in previous climatic extremes.
Collapse
|
14
|
Kougioumoutzis K, Kokkoris IP, Panitsa M, Kallimanis A, Strid A, Dimopoulos P. Plant Endemism Centres and Biodiversity Hotspots in Greece. BIOLOGY 2021; 10:72. [PMID: 33498512 PMCID: PMC7909545 DOI: 10.3390/biology10020072] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 12/21/2022]
Abstract
Biodiversity hotspots (BH) cover a small fraction of the Earth's surface, yet host numerous endemics. Human-induced biodiversity loss has been increasing worldwide, despite attempts to halt the extinction crisis. There is thus an urgent need to efficiently allocate the available conservation funds in an optimised conservation prioritization scheme. Identifying BH and endemism centres (EC) is therefore a valuable tool in conservation prioritization and planning. Even though Greece is one of the most plant species-rich European countries, few studies have dealt with the identification of BH or EC and none has ever incorporated phylogenetic information or extended to the national scale. Consequently, we are unaware of the extent that Special Areas of Conservation (SAC) of the Natura 2000 network efficiently protect Greek plant diversity. Here, we located for the first time at a national scale and in a phylogenetic framework, the areas serving as BH and EC, and assessed the effectiveness of the Greek SAC in safeguarding them. BH and EC are mainly located near mountainous areas, and in areas supposedly floristically impoverished, such as the central Aegean islands. A critical re-assessment of the Greek SAC might be needed to minimize the extinction risk of the Greek endemics, by focusing the conservation efforts also on the BH and EC that fall outside the established Greek SAC.
Collapse
Affiliation(s)
- Konstantinos Kougioumoutzis
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
- Department of Ecology and Systematics, Faculty of Biology, National and Kapodistrian University of Athens, Panepistimiopolis, 15701 Athens, Greece
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Ioannis P. Kokkoris
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | - Maria Panitsa
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| | - Athanasios Kallimanis
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | | | - Panayotis Dimopoulos
- Division of Plant Biology, Laboratory of Botany, Department of Biology, University of Patras, 26504 Patras, Greece; (I.P.K.); (M.P.); (P.D.)
| |
Collapse
|
15
|
Integrating Plant Diversity Data into Mapping and Assessment of Ecosystem and Their Services (MAES) Implementation in Greece: Woodland and Forest Pilot. FORESTS 2020. [DOI: 10.3390/f11090956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Research Highlights: This is the first approach that integrates biodiversity data into Mapping and Assessment of Ecosystem and their Services (MAES) implementation and natural capital accounting process, at the national scale, using an extensive vascular plant dataset for Greece. Background and Objectives: The study aims to support the MAES implementation in Greece, by assessing, as a pilot, the woodland and forest ecosystem type; the targets of the study are: (a) Identify and map ecosystem type extent; (b) identify ecosystem condition using biodiversity in terms of plant species richness (i.e., total, ecosystem exclusive, endemic, ecosystem exclusive endemic diversity); (c) develop ecosystem asset proxy indicators by combining ecosystem extent and ecosystem condition outcomes; (d) identify shortcomings; and (e) propose future steps and implications for the MAES implementation and natural capital accounting, based on biodiversity data. Materials and Methods: Following the national European Union’s and United Nations System of Environmental Economic Accounts-Experimental Ecosystem Accounting (SEEA-EEA) guidelines and the adopted National Set of MAES Indicators, we developed a set of four proxy ecosystem asset indicators to assess ecosystem types with respect to ecosystem area extent and ecosystem condition. This was as interpreted by its plant diversity in terms of species richness (total, ecosystem exclusive, endemic, and ecosystem exclusive endemic diversity). Results: The results revealed that when indicators use well-developed biodiversity datasets, in combination with ecosystem extent data, they can provide the baseline for ecosystem condition assessment, ecosystem asset delineation, and support operational MAES studies. Conclusions: The relation among biodiversity, ecosystem condition, and ecosystem services is not a linear equation and detailed, fine-scale assessments are needed to identify and interpret all aspects of biodiversity. However, areas of importance are pinpointed throughout Greece, and guidance is provided for case-study selection, conservation strategy, and decision-making under the perspective of national and EU environmental policies.
Collapse
|
16
|
Spatial Phylogenetics, Biogeographical Patterns and Conservation Implications of the Endemic Flora of Crete (Aegean, Greece) under Climate Change Scenarios. BIOLOGY 2020; 9:biology9080199. [PMID: 32751787 PMCID: PMC7463760 DOI: 10.3390/biology9080199] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/24/2022]
Abstract
Human-induced biodiversity loss has been accelerating since the industrial revolution. The climate change impacts will severely alter the biodiversity and biogeographical patterns at all scales, leading to biotic homogenization. Due to underfunding, a climate smart, conservation-prioritization scheme is needed to optimize species protection. Spatial phylogenetics enable the identification of endemism centers and provide valuable insights regarding the eco-evolutionary and conservation value, as well as the biogeographical origin of a given area. Many studies exist regarding the conservation prioritization of mainland areas, yet none has assessed how climate change might alter the biodiversity and biogeographical patterns of an island biodiversity hotspot. Thus, we conducted a phylogenetically informed, conservation prioritization study dealing with the effects of climate change on Crete’s plant diversity and biogeographical patterns. Using several macroecological analyses, we identified the current and future endemism centers and assessed the impact of climate change on the biogeographical patterns in Crete. The highlands of Cretan mountains have served as both diversity cradles and museums, due to their stable climate and high topographical heterogeneity, providing important ecosystem services. Historical processes seem to have driven diversification and endemic species distribution in Crete. Due to the changing climate and the subsequent biotic homogenization, Crete’s unique bioregionalization, which strongly reminiscent the spatial configuration of the Pliocene/Pleistocene Cretan paleo-islands, will drastically change. The emergence of the ‘Anthropocene’ era calls for the prioritization of biodiversity-rich areas, serving as mixed-endemism centers, with high overlaps among protected areas and climatic refugia.
Collapse
|