1
|
Lee S, Lee H, Jang YJ, Lee K, Kim HJ, Lee JY, Kim JM, Park S, Song JS, Lee JH, Hyun TK, Park JI, Yi SJ, Kim K. Denatonium inhibits RANKL-induced osteoclast differentiation and rescues the osteoporotic phenotype by blocking p65 signaling pathway. Mol Med 2024; 30:248. [PMID: 39701944 DOI: 10.1186/s10020-024-01031-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Bone remodeling is a critical process that maintains skeletal integrity, orchestrated by the balanced activities of osteoclasts, which resorb bone, and osteoblasts, which form bone. Osteoclastogenesis, the formation of osteoclasts, is primarily driven by NFATc1, a process activated through c-Fos and NF-κB signaling pathways in response to receptor activator of nuclear factor κB ligand (RANKL). Dysregulation of RANKL signaling is a key contributor to pathological bone loss, as seen in conditions such as osteoporosis. METHODS We investigated the effects of denatonium, a known bitter compound, on RANKL-induced osteoclast differentiation. We used RNA sequencing (RNA-seq) to analyze gene expression profiles in osteoclast precursors treated with denatonium. Transcription factor prediction analysis was conducted to identify key targets of denatonium action. Additionally, we performed Western blotting to examine the phosphorylation status of AKT and p65, crucial components of the NF-κB pathway. Chromatin immunoprecipitation (ChIP) assays were employed to assess the binding of p65 to promoter regions of osteoclast-related genes. Finally, we tested the therapeutic potential of denatonium in a mouse model of osteoporosis. RESULTS Our findings demonstrated that denatonium significantly inhibited RANKL-induced osteoclastogenesis by targeting the p65 pathway. RNA-seq analysis revealed a downregulation of osteoclast-related genes following denatonium treatment, corroborated by transcription factor prediction analysis, which highlighted p65 as a key target. Denatonium effectively blocked the phosphorylation of AKT and p65, key steps in NF-κB activation. ChIP assays further confirmed that denatonium reduced the enrichment of p65 at promoter regions critical for osteoclast differentiation. In vivo, denatonium treatment in an osteoporosis animal model led to a significant restoration of bone health, demonstrating its potential as a therapeutic agent. CONCLUSIONS This study identifies denatonium as an inhibitor of RANKL-induced osteoclast differentiation, potentially acting through suppression of the p65 signaling pathway. The ability of denatonium to downregulate osteoclast-related genes and inhibit key signaling events highlights its potential as a candidate for further investigation in the context of bone loss and osteoporosis.
Collapse
Affiliation(s)
- Sheunghun Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hyerim Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Hye-Jung Kim
- New Drug Development Center, KBIO Osong Medical Innovation Foundation, Chungbuk, Republic of Korea
| | - Jung Yeol Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jin-Man Kim
- Asan Medical Center, Asan Institute for Life Sciences, Seoul, Republic of Korea
| | - Sunyou Park
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Jin Sook Song
- Data Convergence Drug Research Center, Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Ji Hoon Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science & Technology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
2
|
Bang SG, Joeng WT, Hyun TK. Gibberellic acid 3 enhanced the anticancer activity of Abeliophyllum distichum adventitious roots by activating the diterpenoid biosynthesis pathway. Nat Prod Res 2024; 38:3902-3908. [PMID: 37820039 DOI: 10.1080/14786419.2023.2266169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
The industrial value of various plants has been improved through the of plant cell culture systems with elicitation. In this study, the adventitious root of Abeliophyllum distichum (AdAR) was treated with gibberellic acid 3 (GA3) to improve its anticancer property. The hexane fraction of the GA3-treated A. distichum adventitious root exhibited a stronger cytotoxic activity against A549 cells than the hexane fraction of AdAR. Through GC/MS and principal component analysis, we identified ferruginol and sugiol as anticancer compounds, which were induced by GA3 treatment in AdAR. Gene expression analysis combined with functional characterisation suggests that the GA3 treatment increased the transcription of geranylgeranyl pyrophosphate synthases and copalyl diphosphate synthase, which led to the accumulation of diterpenoids, including ferruginol and sugiol. Overall, these findings can contribute to the advancement of metabolic engineering for enhancing the biosynthesis of active diterpenoids, and facilitate the large-scale production of bioactive compounds sourced from A. distichum.
Collapse
Affiliation(s)
- Seoung Gun Bang
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju, Republic of Korea
| | - Won Tae Joeng
- Residual Agrochemical Assessment Division, National Institute of Agricultural Sciences, Wanju, Republic of Korea
| | - Tae Kyung Hyun
- Department of Industrial Plant Science and Technology, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
3
|
Lee K, Yun S, Park J, Lee S, Carcaboso AM, Yi SJ, Kim K. Dimethyl alpha-ketoglutarate inhibits proliferation in diffuse intrinsic pontine glioma by reprogramming epigenetic and transcriptional networks. Biochem Biophys Res Commun 2023; 677:6-12. [PMID: 37523894 DOI: 10.1016/j.bbrc.2023.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/23/2023] [Indexed: 08/02/2023]
Abstract
Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor with limited therapeutic options. Here, we investigated the potential of dimethyl alpha-ketoglutarate (DMKG) as an anti-proliferative agent against DIPG and unraveled its underlying molecular mechanisms. DMKG exhibited robust inhibition of DIPG cell proliferation, colony formation, and neurosphere growth. Transcriptomic analysis revealed substantial alterations in gene expression, with upregulated genes enriched in hypoxia-related pathways and downregulated genes associated with cell division and the mitotic cell cycle. Notably, DMKG induced G1/S phase cell cycle arrest and downregulated histone H3 lysine 27 acetylation (H3K27ac) without affecting H3 methylation levels. The inhibition of AKT and ERK signaling pathways by DMKG coincided with decreased expression of the CBP/p300 coactivator. Importantly, we identified the c-MYC-p300/ATF1-p300 axis as a key mediator of DMKG's effects, demonstrating reduced binding to target gene promoters and decreased H3K27ac levels. Depletion of c-MYC or ATF1 effectively inhibited DIPG cell growth. These findings highlight the potent anti-proliferative properties of DMKG, its impact on epigenetic modifications, and the involvement of the c-MYC-p300/ATF1-p300 axis in DIPG, shedding light on potential therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sohyeong Yun
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Seokchan Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Angel M Carcaboso
- SJD Pediatric Cancer Center Barcelona, Hospital Sant Joan de Deu, Institut de Recerca Sant Joan de Deu, Barcelona, 08950, Spain
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
4
|
Yi SJ, Jang YJ, Lee S, Cho SJ, Kang K, Park JI, Chae HJ, Kim HR, Kim K. TMBIM6 deficiency leads to bone loss by accelerating osteoclastogenesis. Redox Biol 2023; 64:102804. [PMID: 37399733 PMCID: PMC10336580 DOI: 10.1016/j.redox.2023.102804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/15/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
TMBIM6 is an endoplasmic reticulum (ER) protein that modulates various physiological and pathological processes, including metabolism and cancer. However, its involvement in bone remodeling has not been investigated. In this study, we demonstrate that TMBIM6 serves as a crucial negative regulator of osteoclast differentiation, a process essential for bone remodeling. Our investigation of Tmbim6-knockout mice revealed an osteoporotic phenotype, and knockdown of Tmbim6 inhibited the formation of multinucleated tartrate-resistant acid phosphatase-positive cells, which are characteristic of osteoclasts. Transcriptome and immunoblot analyses uncovered that TMBIM6 exerts its inhibitory effect on osteoclastogenesis by scavenging reactive oxygen species and preventing p65 nuclear localization. Additionally, TMBIM6 depletion was found to promote p65 localization to osteoclast-related gene promoters. Notably, treatment with N-acetyl cysteine, an antioxidant, impeded the osteoclastogenesis induced by TMBIM6-depleted cells, supporting the role of TMBIM6 in redox regulation. Furthermore, we discovered that TMBIM6 controls redox regulation via NRF2 signaling pathways. Our findings establish TMBIM6 as a critical regulator of osteoclastogenesis and suggest its potential as a therapeutic target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - You-Jee Jang
- Department of Biomedical Laboratory Science, Honam University, Gwangju, Republic of Korea
| | - Seokchan Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sung-Jin Cho
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kyuho Kang
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Jae-Il Park
- Korea Basic Science Institute, Gwangju Center at Chonnam National University, Gwangju, Republic of Korea
| | - Han-Jung Chae
- School of Pharmacy and New Drug Development Research Institute, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyung-Ryong Kim
- Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea.
| |
Collapse
|
5
|
Hou W, Chen M, Ye C, Chen E, Li W, Zhang W. Parkin Inhibits RANKL-Induced Osteoclastogenesis and Ovariectomy-Induced Bone Loss. Biomolecules 2022; 12:1602. [PMID: 36358952 PMCID: PMC9687699 DOI: 10.3390/biom12111602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 07/27/2023] Open
Abstract
Osteoporosis and osteoporotic fractures comprise a substantial health and socioeconomic burden. The leading cause of osteoporosis is an imbalance in bone formation and bone resorption caused by hyperactive osteoclasts. Therefore, a new strategy to suppress osteoclastogenesis is needed. Parkin is likely closely associated with bone metabolism, although its role in osteoclastogenesis is unclear. In this study, the Parkin protein inhibited the receptor activator of nuclear factor-κB ligand (RANKL)-induced osteoclast formation, osteoclast-specific gene expression, F-actin ring formation, and bone resorption pit formation in vitro. Moreover, depletion of Parkin enhanced RANKL-induced osteoclast formation, osteoclast-specific gene expression, F-actin ring formation, and bone resorption pit formation. Reactive oxygen species (ROS) activity was suppressed, while autophagy was upregulated with the presence of the Parkin protein. ROS activity was upregulated and autophagy was decreased due to Parkin knockdown. In addition, intravenous administration of Parkin rescued ovariectomy-induced bone loss and reduced osteoclastogenesis in vivo. Collectively, Parkin has therapeutic potential for diseases associated with overactive osteoclasts.
Collapse
Affiliation(s)
- Weiduo Hou
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Mo Chen
- Department of Rheumatology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Chenyi Ye
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Erman Chen
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Weixu Li
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| | - Wei Zhang
- Department of Orthopedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310009, China
- Research Institute of Orthopedics, Zhejiang University, Hangzhou 310009, China
| |
Collapse
|
6
|
Gao M, Xue X, Zhang X, Chang Y, Zhang Q, Li X, Wang Y, Zhang L, Li Z, Dong H, Wang W, Yao W. Discovery of potential active ingredients of Er-Zhi-Wan, a famous traditional Chinese formulation, in model rat serum for treating osteoporosis with kidney-yin deficiency by UPLC-Q/TOF-MS and molecular docking. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123397. [PMID: 35921699 DOI: 10.1016/j.jchromb.2022.123397] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Er-Zhi-Wan (EZW), a classical traditional Chinese formulation, has attracted more and more attention. This study was carried out to analyze the constituents of EZW absorbed into blood and find out the potential active ingredients for treating osteoporosis (OP) with kidney-yin deficiency (KYD). The rat model of OP with KYD was achieved by ovariectomies and using the mixture of thyroxine and reserpine. Then ultra-high performance liquid chromatography coupled with a quadrupole time-of-flight mass spectrometer (UPLC-Q/TOF-MS) combined with statistical analysis was used to analyze the constituents of EZW absorbed into blood and differential components between the normal and OP with KYD rats. Finally, the components identified in OP with KYD rats were docked with targets of OP with KYD found in online databases. The results of molecular docking were adopted to find the potential active ingredients and further verified in vitro experiment. A total of 21 prototype compounds and 69 metabolites were identified in serum. Among them, 63 components in model rats and 50 components in normal rats were summarized, respectively. Most of the identified metabolites in serum of model rats were produced by hydrolysis, oxidation or glucuronidation, while in serum of normal rats were produced by hydrolysis, oxidation and methylation. According to the results of molecular docking, specnuezhenide, salidroside, tyrosol, echinacoside and verbascoside could be classified as potential active ingredients. The activity of salidroside and a metabolite was verified by pharmacodynamics analysis. In summary, UPLC-Q/TOF-MS system was combined with molecular docking to search the potential active ingredients from model rats of OP with KYD, which provided a new idea for the research on the pharmacodynamic material basis of other traditional medicine. Moreover, the result of this study lays the foundation for further study regarding the mechanism of EZW in treating OP with KYD.
Collapse
Affiliation(s)
- Mengting Gao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Xue
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xuemeng Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yueyue Chang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Qiulan Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Xin Li
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Yifei Wang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China
| | - Zhipeng Li
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210009, China.
| | - Haijuan Dong
- The Public Laboratory Platform, China Pharmaceutical University, Nanjing, Jiangsu Province 210009, China
| | - Wei Wang
- Department of Gynecology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Weifeng Yao
- School of Pharmacy, Nanjing University of Chinese Medicine & Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization & National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing, Jiangsu Province 210023, China.
| |
Collapse
|
7
|
Rosa JT, Laizé V, Gavaia PJ, Cancela ML. Fish Models of Induced Osteoporosis. Front Cell Dev Biol 2021; 9:672424. [PMID: 34179000 PMCID: PMC8222987 DOI: 10.3389/fcell.2021.672424] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/28/2021] [Indexed: 12/13/2022] Open
Abstract
Osteopenia and osteoporosis are bone disorders characterized by reduced bone mineral density (BMD), altered bone microarchitecture and increased bone fragility. Because of global aging, their incidence is rapidly increasing worldwide and novel treatments that would be more efficient at preventing disease progression and at reducing the risk of bone fractures are needed. Preclinical studies are today a major bottleneck to the collection of new data and the discovery of new drugs, since they are commonly based on rodent in vivo systems that are time consuming and expensive, or in vitro systems that do not exactly recapitulate the complexity of low BMD disorders. In this regard, teleost fish, in particular zebrafish and medaka, have recently emerged as suitable alternatives to study bone formation and mineralization and to model human bone disorders. In addition to the many technical advantages that allow faster and larger studies, the availability of several fish models that efficiently mimic human osteopenia and osteoporosis phenotypes has stimulated the interest of the academia and industry toward a better understanding of the mechanisms of pathogenesis but also toward the discovery of new bone anabolic or antiresorptive compounds. This mini review recapitulates the in vivo teleost fish systems available to study low BMD disorders and highlights their applications and the recent advances in the field.
Collapse
Affiliation(s)
- Joana T Rosa
- Centre of Marine Sciences, University of Algarve, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,S2 AQUA - Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,GreenCoLab - Associação Oceano Verde, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences, University of Algarve, Faro, Portugal.,Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal.,Algarve Biomedical Center, University of Algarve, Faro, Portugal
| |
Collapse
|