1
|
Walker EJL, Pampuch M, Chang N, Cochrane RR, Karas BJ. Design and assembly of the 117-kb Phaeodactylum tricornutum chloroplast genome. PLANT PHYSIOLOGY 2024; 194:2217-2228. [PMID: 38114089 PMCID: PMC10980414 DOI: 10.1093/plphys/kiad670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
There is growing impetus to expand the repertoire of chassis available to synthetic biologists. Chloroplast genomes present an interesting alternative for engineering photosynthetic eukaryotes; however, development of the chloroplast as a synthetic biology chassis has been limited by a lack of efficient techniques for whole-genome cloning and engineering. Here, we demonstrate two approaches for cloning the 117-kb Phaeodactylum tricornutum chloroplast genome that have 90% to 100% efficiency when screening as few as 10 yeast (Saccharomyces cerevisiae) colonies following yeast assembly. The first method reconstitutes the genome from PCR-amplified fragments, whereas the second method involves precloning these fragments into individual plasmids from which they can later be released. In both cases, overlapping fragments of the chloroplast genome and a cloning vector are homologously recombined into a singular contig through yeast assembly. The cloned chloroplast genome can be stably maintained and propagated within Escherichia coli, which provides an exciting opportunity for engineering a delivery mechanism for bringing DNA directly to the algal chloroplast. Also, one of the cloned genomes was designed to contain a single SapI site within the yeast URA3 (coding for orotidine-5'-phosphate decarboxylase) open-reading frame, which can be used to linearize the genome and integrate designer cassettes via golden-gate cloning or further iterations of yeast assembly. The methods presented here could be extrapolated to other species-particularly those with a similar chloroplast genome size and architecture (e.g. Thalassiosira pseudonana).
Collapse
Affiliation(s)
- Emma J L Walker
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Mark Pampuch
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Nelson Chang
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Ryan R Cochrane
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| | - Bogumil J Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON N6A 5C1, Canada
| |
Collapse
|
2
|
Gomide MDS, Leitão MDC, Coelho CM. Biocircuits in plants and eukaryotic algae. FRONTIERS IN PLANT SCIENCE 2022; 13:982959. [PMID: 36212277 PMCID: PMC9545776 DOI: 10.3389/fpls.2022.982959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
As one of synthetic biology's foundations, biocircuits are a strategy of genetic parts assembling to recognize a signal and to produce a desirable output to interfere with a biological function. In this review, we revisited the progress in the biocircuits technology basis and its mandatory elements, such as the characterization and assembly of functional parts. Furthermore, for a successful implementation, the transcriptional control systems are a relevant point, and the computational tools help to predict the best combinations among the biological parts planned to be used to achieve the desirable phenotype. However, many challenges are involved in delivering and stabilizing the synthetic structures. Some research experiences, such as the golden crops, biosensors, and artificial photosynthetic structures, can indicate the positive and limiting aspects of the practice. Finally, we envision that the modulatory structural feature and the possibility of finer gene regulation through biocircuits can contribute to the complex design of synthetic chromosomes aiming to develop plants and algae with new or improved functions.
Collapse
Affiliation(s)
- Mayna da Silveira Gomide
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
- School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, Brazil
| | - Matheus de Castro Leitão
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Cíntia Marques Coelho
- Laboratory of Synthetic Biology, Department of Genetics and Morphology, Institute of Biological Science, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| |
Collapse
|
3
|
Cochrane RR, Shrestha A, Severo de Almeida MM, Agyare-Tabbi M, Brumwell SL, Hamadache S, Meaney JS, Nucifora DP, Say HH, Sharma J, Soltysiak MPM, Tong C, Van Belois K, Walker EJL, Lachance MA, Gloor GB, Edgell DR, Shapiro RS, Karas BJ. Superior Conjugative Plasmids Delivered by Bacteria to Diverse Fungi. BIODESIGN RESEARCH 2022; 2022:9802168. [PMID: 37850145 PMCID: PMC10521675 DOI: 10.34133/2022/9802168] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/28/2022] [Indexed: 10/19/2023] Open
Abstract
Fungi are nature's recyclers, allowing for ecological nutrient cycling and, in turn, the continuation of life on Earth. Some fungi inhabit the human microbiome where they can provide health benefits, while others are opportunistic pathogens that can cause disease. Yeasts, members of the fungal kingdom, have been domesticated by humans for the production of beer, bread, and, recently, medicine and chemicals. Still, the great untapped potential exists within the diverse fungal kingdom. However, many yeasts are intractable, preventing their use in biotechnology or in the development of novel treatments for pathogenic fungi. Therefore, as a first step for the domestication of new fungi, an efficient DNA delivery method needs to be developed. Here, we report the creation of superior conjugative plasmids and demonstrate their transfer via conjugation from bacteria to 7 diverse yeast species including the emerging pathogen Candida auris. To create our superior plasmids, derivatives of the 57 kb conjugative plasmid pTA-Mob 2.0 were built using designed gene deletions and insertions, as well as some unintentional mutations. Specifically, a cluster mutation in the promoter of the conjugative gene traJ had the most significant effect on improving conjugation to yeasts. In addition, we created Golden Gate assembly-compatible plasmid derivatives that allow for the generation of custom plasmids to enable the rapid insertion of designer genetic cassettes. Finally, we demonstrated that designer conjugative plasmids harboring engineered restriction endonucleases can be used as a novel antifungal agent, with important applications for the development of next-generation antifungal therapeutics.
Collapse
Affiliation(s)
- Ryan R. Cochrane
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Arina Shrestha
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Mariana M. Severo de Almeida
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Michelle Agyare-Tabbi
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Stephanie L. Brumwell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Samir Hamadache
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Jordyn S. Meaney
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Daniel P. Nucifora
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Henry Heng Say
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | | | - Cheryl Tong
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Katherine Van Belois
- Department of Biology, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Emma J. L. Walker
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Marc-André Lachance
- Department of Biology, The University of Western Ontario, London, Ontario, Canada, N6A 5B7
| | - Gregory B. Gloor
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - David R. Edgell
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| | - Rebecca S. Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada, N1G 2W1
| | - Bogumil J. Karas
- Department of Biochemistry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada, N6A 5C1
| |
Collapse
|