1
|
Szczepski K, Jaremko Ł. AlphaFold and what is next: bridging functional, systems and structural biology. Expert Rev Proteomics 2025:1-14. [PMID: 39824781 DOI: 10.1080/14789450.2025.2456046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/20/2025]
Abstract
INTRODUCTION The DeepMind's AlphaFold (AF) has revolutionized biomedical and biocience research by providing both experts and non-experts with an invaluable tool for predicting protein structures. However, while AF is highly effective for predicting structures of rigid and globular proteins, it is not able to fully capture the dynamics, conformational variability, and interactions of proteins with ligands and other biomacromolecules. AREAS COVERED In this review, we present a comprehensive overview of the latest advancements in 3D model predictions for biomacromolecules using AF. We also provide a detailed analysis its of strengths and limitations, and explore more recent iterations, modifications, and practical applications of this strategy. Moreover, we map the path forward for expanding the landscape of AF toward predicting structures of every protein and peptide, and their interactions in the proteome in the most physiologically relevant form. This discussion is based on an extensive literature search performed using PubMed and Google Scholar. EXPERT OPINION While significant progress has been made to enhance AF's modeling capabilities, we argue that a combined approach integrating both various in silico and in vitro methods will be most beneficial for the future of structural biology, bridging the gaps between static and dynamic features of proteins and their functions.
Collapse
Affiliation(s)
- Kacper Szczepski
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Łukasz Jaremko
- Biological and Environmental Science & Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Batista-Silva JP, Gomes D, Sousa SF, Sousa Â, Passarinha LA. Advances in structure-based drug design targeting membrane protein markers in prostate cancer. Drug Discov Today 2024; 29:104130. [PMID: 39103143 DOI: 10.1016/j.drudis.2024.104130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 08/07/2024]
Abstract
Prostate cancer (PCa) is one of the leading cancers in men and the lack of suitable biomarkers or their modulators results in poor prognosis. Membrane proteins (MPs) have a crucial role in the development and progression of PCa and can be attractive therapeutic targets. However, experimental limitations in targeting MPs hinder effective biomarker and inhibitor discovery. To overcome this barrier, computational methods can yield structural insights and screen large libraries of compounds, accelerating lead identification and optimization. In this review, we examine current breakthroughs in computer-aided drug design (CADD), with emphasis on structure-based approaches targeting the most relevant membrane-bound PCa biomarkers.
Collapse
Affiliation(s)
- João P Batista-Silva
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Diana Gomes
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal
| | - Sérgio F Sousa
- LAQV/REQUIMTE, BioSIM - Department of Medicine, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal.
| | - Luís A Passarinha
- CICS-UBI-Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; UCIBIO-Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2819-516 Caparica, Portugal; Laboratório de Fármaco-Toxicologia-UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal.
| |
Collapse
|
3
|
Li H, Sun X, Cui W, Xu M, Dong J, Ekundayo BE, Ni D, Rao Z, Guo L, Stahlberg H, Yuan S, Vogel H. Computational drug development for membrane protein targets. Nat Biotechnol 2024; 42:229-242. [PMID: 38361054 DOI: 10.1038/s41587-023-01987-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/13/2023] [Indexed: 02/17/2024]
Abstract
The application of computational biology in drug development for membrane protein targets has experienced a boost from recent developments in deep learning-driven structure prediction, increased speed and resolution of structure elucidation, machine learning structure-based design and the evaluation of big data. Recent protein structure predictions based on machine learning tools have delivered surprisingly reliable results for water-soluble and membrane proteins but have limitations for development of drugs that target membrane proteins. Structural transitions of membrane proteins have a central role during transmembrane signaling and are often influenced by therapeutic compounds. Resolving the structural and functional basis of dynamic transmembrane signaling networks, especially within the native membrane or cellular environment, remains a central challenge for drug development. Tackling this challenge will require an interplay between experimental and computational tools, such as super-resolution optical microscopy for quantification of the molecular interactions of cellular signaling networks and their modulation by potential drugs, cryo-electron microscopy for determination of the structural transitions of proteins in native cell membranes and entire cells, and computational tools for data analysis and prediction of the structure and function of cellular signaling networks, as well as generation of promising drug candidates.
Collapse
Affiliation(s)
- Haijian Li
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Xiaolin Sun
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Wenqiang Cui
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Marc Xu
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junlin Dong
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Babatunde Edukpe Ekundayo
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Dongchun Ni
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Zhili Rao
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Liwei Guo
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China
| | - Henning Stahlberg
- Laboratory of Biological Electron Microscopy, IPHYS, SB, EPFL and Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| | - Shuguang Yuan
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
| | - Horst Vogel
- Center for Computer-Aided Drug Discovery, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology/Chinese Academy of Sciences (SIAT/CAS), Shenzhen, China.
- Institut des Sciences et Ingénierie Chimiques (ISIC), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Ansell TB, Song W, Coupland CE, Carrique L, Corey RA, Duncan AL, Cassidy CK, Geurts MMG, Rasmussen T, Ward AB, Siebold C, Stansfeld PJ, Sansom MSP. LipIDens: simulation assisted interpretation of lipid densities in cryo-EM structures of membrane proteins. Nat Commun 2023; 14:7774. [PMID: 38012131 PMCID: PMC10682427 DOI: 10.1038/s41467-023-43392-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
Cryo-electron microscopy (cryo-EM) enables the determination of membrane protein structures in native-like environments. Characterising how membrane proteins interact with the surrounding membrane lipid environment is assisted by resolution of lipid-like densities visible in cryo-EM maps. Nevertheless, establishing the molecular identity of putative lipid and/or detergent densities remains challenging. Here we present LipIDens, a pipeline for molecular dynamics (MD) simulation-assisted interpretation of lipid and lipid-like densities in cryo-EM structures. The pipeline integrates the implementation and analysis of multi-scale MD simulations for identification, ranking and refinement of lipid binding poses which superpose onto cryo-EM map densities. Thus, LipIDens enables direct integration of experimental and computational structural approaches to facilitate the interpretation of lipid-like cryo-EM densities and to reveal the molecular identities of protein-lipid interactions within a bilayer environment. We demonstrate this by application of our open-source LipIDens code to ten diverse membrane protein structures which exhibit lipid-like densities.
Collapse
Affiliation(s)
- T Bertie Ansell
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Wanling Song
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- MSD R&D Innovation Centre, 120 Moorgate, London, EC2M 6UR, UK
| | - Claire E Coupland
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Loic Carrique
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Robin A Corey
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK
| | - Anna L Duncan
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Chemistry, Aarhus University, Lagelsandsgade 140, 8000, Aarhus C, Denmark
| | - C Keith Cassidy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
- Department of Physics and Astronomy, University of Missouri-Columbia, Columbia, MO, 65211, USA
| | - Maxwell M G Geurts
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Tim Rasmussen
- Biocenter and Rudolf-Virchow-Zentrum, Universität Würzburg, Haus D15, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Andrew B Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Christian Siebold
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Phillip J Stansfeld
- School of Life Sciences & Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
5
|
Goncharuk MV, Vasileva EV, Ananiev EA, Gorokhovatsky AY, Bocharov EV, Mineev KS, Goncharuk SA. Facade-Based Bicelles as a New Tool for Production of Active Membrane Proteins in a Cell-Free System. Int J Mol Sci 2023; 24:14864. [PMID: 37834312 PMCID: PMC10573531 DOI: 10.3390/ijms241914864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/18/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Integral membrane proteins are important components of a cell. Their structural and functional studies require production of milligram amounts of proteins, which nowadays is not a routine process. Cell-free protein synthesis is a prospective approach to resolve this task. However, there are few known membrane mimetics that can be used to synthesize active membrane proteins in high amounts. Here, we present the application of commercially available "Facade" detergents for the production of active rhodopsin. We show that the yield of active protein in lipid bicelles containing Facade-EM, Facade-TEM, and Facade-EPC is several times higher than in the case of conventional bicelles with CHAPS and DHPC and is comparable to the yield in the presence of lipid-protein nanodiscs. Moreover, the effects of the lipid-to-detergent ratio, concentration of detergent in the feeding mixture, and lipid composition of the bicelles on the total, soluble, and active protein yields are discussed. We show that Facade-based bicelles represent a prospective membrane mimetic, available for the production of membrane proteins in a cell-free system.
Collapse
Affiliation(s)
- Marina V. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Ekaterina V. Vasileva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Egor A. Ananiev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Andrey Y. Gorokhovatsky
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Eduard V. Bocharov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
| | - Sergey A. Goncharuk
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow 117997, Russia; (M.V.G.); (A.Y.G.); (E.V.B.)
- Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| |
Collapse
|
6
|
Gupta MD, Flaskamp Y, Roentgen R, Juergens H, Armero-Gimenez J, Albrecht F, Hemmerich J, Arfi ZA, Neuser J, Spiegel H, Schillberg S, Yeliseev A, Song L, Qiu J, Williams C, Finnern R. Scaling eukaryotic cell-free protein synthesis achieved with the versatile and high-yielding tobacco BY-2 cell lysate. Biotechnol Bioeng 2023; 120:2890-2906. [PMID: 37376851 DOI: 10.1002/bit.28461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/18/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Eukaryotic cell-free protein synthesis (CFPS) can accelerate expression and high-throughput analysis of complex proteins with functionally relevant post-translational modifications (PTMs). However, low yields and difficulties scaling such systems have prevented their widespread adoption in protein research and manufacturing. Here, we provide detailed demonstrations for the capabilities of a CFPS system derived from Nicotiana tabacum BY-2 cell culture (BY-2 lysate; BYL). BYL is able to express diverse, functional proteins at high yields in 48 h, complete with native disulfide bonds and N-glycosylation. An optimized version of the technology is commercialized as ALiCE® and advances in scaling of BYL production methodologies now allow scaling of eukaryotic CFPS reactions. We show linear, lossless scale-up of batch mode protein expression from 100 µL microtiter plates to 10 and 100 mL volumes in Erlenmeyer flasks, culminating in preliminary data from a litre-scale reaction in a rocking-type bioreactor. Together, scaling across a 20,000x range is achieved without impacting product yields. Production of multimeric virus-like particles from the BYL cytosolic fraction were then shown, followed by functional expression of multiple classes of complex, difficult-to-express proteins using the native microsomes of the BYL CFPS. Specifically: a dimeric enzyme; a monoclonal antibody; the SARS-CoV-2 receptor-binding domain; a human growth factor; and a G protein-coupled receptor membrane protein. Functional binding and activity are demonstrated, together with in-depth PTM characterization of purified proteins through disulfide bond and N-glycan analysis. Taken together, BYL is a promising end-to-end R&D to manufacturing platform with the potential to significantly reduce the time-to-market for high value proteins and biologics.
Collapse
Affiliation(s)
| | | | | | | | - Jorge Armero-Gimenez
- LenioBio GmbH, Technology Centre, Aachen, Germany
- Laboratory of Nematology, Wageningen University and Research, Wageningen, The Netherlands
| | | | | | | | - Jakob Neuser
- LenioBio GmbH, Technology Centre, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- RWTH Aachen University, Institute for Molecular Biotechnology, Aachen, Germany
| | - Alexei Yeliseev
- National Institute on Alcoholism and Alcohol Abuse, National Institutes of Health, Rockville, Maryland, USA
| | - Lusheng Song
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Ji Qiu
- The Virginia G. Piper Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | | | | |
Collapse
|
7
|
Harrison PJ, Vecerkova T, Clare DK, Quigley A. A review of the approaches used to solve sub-100 kDa membrane proteins by cryo-electron microscopy. J Struct Biol 2023; 215:107959. [PMID: 37004781 DOI: 10.1016/j.jsb.2023.107959] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Membrane proteins (MPs) are essential components of all biological membranes, contributing to key cellular functions that include signalling, molecular transport and energy metabolism. Consequently, MPs are important biomedical targets for therapeutics discovery. Despite hardware and software developments in cryo-electron microscopy, as well as MP sample preparation, MPs smaller than 100 kDa remain difficult to study structurally. Significant investment is required to overcome low levels of naturally abundant protein, MP hydrophobicity as well as conformational and compositional instability. Here we have reviewed the sample preparation approaches that have been taken to successfully express, purify and prepare small MPs for analysis by cryo-EM (those with a total solved molecular weight of under 100 kDa), as well as examining the differing approaches towards data processing and ultimately obtaining a structural solution. We highlight common challenges at each stage in the process as well as strategies that have been developed to overcome these issues. Finally, we discuss future directions and opportunities for the study of sub-100 kDa membrane proteins by cryo-EM.
Collapse
|
8
|
Rachitskii P, Kruglov I, Finkelstein AV, Oganov AR. Protein structure prediction using the evolutionary algorithm USPEX. Proteins 2023. [PMID: 36780132 DOI: 10.1002/prot.26478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 02/14/2023]
Abstract
Protein structure prediction is one of major problems of modern biophysics: current attempts to predict the tertiary protein structure from amino acid sequence are successful mostly when the use of big data and machine learning allows one to reduce the "prediction problem" to the "problem of recognition". Compared with recent successes of deep learning, classical predictive methods lag behind in their accuracy for the prediction of stable conformations. Therefore, in this work we extended the evolutionary algorithm USPEX to predict protein structure based on global optimization starting with the amino acid sequence. Moreover, we compared frequently used force fields for the task of protein structure prediction. Protein structure relaxation and energy calculations were performed using Tinker (with several different force fields) and Rosetta (with REF2015 force field) codes. To create new protein structure models in the USPEX algorithm, we developed novel variation operators. The test of the new method on seven proteins having (for simplicity) no cis-proline (with ω ≈ 0°) residues, and a length of up to 100 residues, revealed that our algorithm predicts tertiary structures of proteins with high accuracy. The comparison of the final potential energies of the predicted protein structures obtained using the USPEX and the Rosetta Abinitio approach showed that in most cases the developed algorithm found structures with close or even lower energy (Amber/Charmm/Oplsaal) and scoring function (REF2015). While USPEX has clearly demonstrated its ability to find very deep energy minima, our study showed that the existing force fields are not sufficiently accurate for accurate blind prediction of protein structures without further experimental verification.
Collapse
Affiliation(s)
| | - Ivan Kruglov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Dukhov Research Institute of Automatics (VNIIA), Moscow, Russia
| | - Alexei V Finkelstein
- Institute of Protein Research of the Russian Academy of Sciences, Moscow, Russia.,Biology Department of the Lomonosov Moscow State University, Moscow, Russia.,Biotechnology Department of the Lomonosov Moscow State University, Moscow, Russia
| | - Artem R Oganov
- Skolkovo Institute of Science and Technology, Skolkovo Innovation Center, Moscow, Russia
| |
Collapse
|
9
|
Gamage N, Cheruvara H, Harrison PJ, Birch J, Hitchman CJ, Olejnik M, Owens RJ, Quigley A. High-Throughput Production and Optimization of Membrane Proteins After Expression in Mammalian Cells. Methods Mol Biol 2023; 2652:79-118. [PMID: 37093471 DOI: 10.1007/978-1-0716-3147-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
High-quality protein samples are an essential requirement of any structural biology experiment. However, producing high-quality protein samples, especially for membrane proteins, is iterative and time-consuming. Membrane protein structural biology remains challenging due to low protein yields and high levels of instability especially when membrane proteins are removed from their native environments. Overcoming the twin problems of compositional and conformational instability requires an understanding of protein size, thermostability, and sample heterogeneity, while a parallelized approach enables multiple conditions to be analyzed simultaneously. We present a method that couples the high-throughput cloning of membrane protein constructs with the transient expression of membrane proteins in human embryonic kidney (HEK) cells and rapid identification of the most suitable conditions for subsequent structural biology applications. This rapid screening method is used routinely in the Membrane Protein Laboratory at Diamond Light Source to identify the most successful protein constructs and conditions while excluding those that will not work. The 96-well format is easily adaptable to enable the screening of constructs, pH, salts, encapsulation agents, and other additives such as lipids.
Collapse
Affiliation(s)
- Nadisha Gamage
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, UK
| | - Harish Cheruvara
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - Peter J Harrison
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - Charlie J Hitchman
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
- Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, UK
| | - Monika Olejnik
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK
| | - Raymond J Owens
- Structural Biology, The Rosalind Franklin Institute, Harwell Science & Innovation Campus, Didcot, UK
- The Wellcome Centre for Human Genetics, Division of Structural Biology, University of Oxford, Oxford, UK
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK.
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot, UK.
| |
Collapse
|
10
|
Wang C, Wojtynek M, Medalia O. Structural investigation of eukaryotic cells: From the periphery to the interior by cryo-electron tomography. Adv Biol Regul 2023; 87:100923. [PMID: 36280452 DOI: 10.1016/j.jbior.2022.100923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Cryo-electron tomography (cryo-ET) combines a close-to-life preservation of the cell with high-resolution three-dimensional (3D) imaging. This allows to study the molecular architecture of the cellular landscape and provides unprecedented views on biological processes and structures. In this review we mainly focus on the application of cryo-ET to visualize and structurally characterize eukaryotic cells - from the periphery to the cellular interior. We discuss strategies that can be employed to investigate the structure of challenging targets in their cellular environment as well as the application of complimentary approaches in conjunction with cryo-ET.
Collapse
Affiliation(s)
- Chunyang Wang
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Matthias Wojtynek
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| |
Collapse
|
11
|
Gerle C, Kishikawa JI, Yamaguchi T, Nakanishi A, Çoruh O, Makino F, Miyata T, Kawamoto A, Yokoyama K, Namba K, Kurisu G, Kato T. Structures of multisubunit membrane complexes with the CRYO ARM 200. Microscopy (Oxf) 2022; 71:249-261. [PMID: 35861182 PMCID: PMC9535789 DOI: 10.1093/jmicro/dfac037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Progress in structural membrane biology has been significantly accelerated by the ongoing 'Resolution Revolution' in cryo-electron microscopy (cryo-EM). In particular, structure determination by single-particle analysis has evolved into the most powerful method for atomic model building of multisubunit membrane protein complexes. This has created an ever-increasing demand in cryo-EM machine time, which to satisfy is in need of new and affordable cryo-electron microscopes. Here, we review our experience in using the JEOL CRYO ARM 200 prototype for the structure determination by single-particle analysis of three different multisubunit membrane complexes: the Thermus thermophilus V-type ATPase VO complex, the Thermosynechococcus elongatus photosystem I monomer and the flagellar motor lipopolysaccharide peptidoglycan ring (LP ring) from Salmonella enterica.
Collapse
Affiliation(s)
- Christoph Gerle
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- RIKEN SPring-8 Center, Life Science Research Infrastructure Group, Sayo-gun, 1-1-1 Kouto, Sayo, Hyogo 679-5148, Japan
| | - Jun-ichi Kishikawa
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Tomoko Yamaguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Atsuko Nakanishi
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Orkun Çoruh
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, Niederösterreich 3400, Austria
| | - Fumiaki Makino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- JEOL Ltd., 3 Chome 1-2 Musashino, Akishima, Tokyo 196-8558, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Akihiro Kawamoto
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Ken Yokoyama
- Department of Molecular Biosciences, Kyoto Sangyo University, Kamigamo-Motoyama, Kyoto 603-8555, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- RIKEN Center for Biosystems Dynamics Research, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
| | - Takayuki Kato
- Institute for Protein Research, Osaka University, 3-2 Yamada Oka, Suita, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
12
|
Magawa CT, Eaton-Fitch N, Balinas C, Sasso EM, Thapaliya K, Barnden L, Maksoud R, Weigel B, Rudd PA, Herrero LJ, Marshall-Gradisnik S. Identification of transient receptor potential melastatin 3 proteotypic peptides employing an efficient membrane protein extraction method for natural killer cells. Front Physiol 2022; 13:947723. [PMID: 36213251 PMCID: PMC9540229 DOI: 10.3389/fphys.2022.947723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction: Mutations and misfolding of membrane proteins are associated with various disorders, hence they make suitable targets in proteomic studies. However, extraction of membrane proteins is challenging due to their low abundance, stability, and susceptibility to protease degradation. Given the limitations in existing protocols for membrane protein extraction, the aim of this investigation was to develop a protocol for a high yield of membrane proteins for isolated Natural Killer (NK) cells. This will facilitate genetic analysis of membrane proteins known as transient receptor potential melastatin 3 (TRPM3) ion channels in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) research.Methods: Two protocols, internally identified as Protocol 1 and 2, were adapted and optimized for high yield protein extraction. Protocol 1 utilized ultrasonic and salt precipitation, while Protocol 2 implemented a detergent and chloroform/methanol approach. Protein concentrations were determined by the Pierce Bicinchoninic Acid (BCA) and the Bio-Rad DC (detergent compatible) protein assays according to manufacturer’s recommendation. Using Protocol 2, protein samples were extracted from NK cells of n = 6 healthy controls (HC) and n = 4 ME/CFS patients. In silico tryptic digest and enhanced signature peptide (ESP) predictor were used to predict high-responding TRPM3 tryptic peptides. Trypsin in-gel digestion was performed on protein samples loaded on SDS-PAGE gels (excised at 150–200 kDa). A liquid chromatography-multiple reaction monitoring (LC-MRM) method was optimized and used to evaluate the detectability of TRPM3 n = 5 proteotypic peptides in extracted protein samples.Results: The detergent-based protocol protein yield was significantly higher (p < 0.05) compared with the ultrasonic-based protocol. The Pierce BCA protein assay showed more reproducibility and compatibility compared to the Bio-Rad DC protein assay. Two high-responding tryptic peptides (GANASAPDQLSLALAWNR and QAILFPNEEPSWK) for TRPM3 were detectable in n = 10 extracted protein samples from NK cells isolated from HC and ME/CFS patients.Conclusion: A method was optimized for high yield protein extraction from human NK cells and for the first time TRPM3 proteotypic peptides were detected using LC-MRM. This new method provides for future research to assess membrane protein structural and functional relationships, particularly to facilitate proteomic investigation of TRPM3 ion channel isoforms in NK cells in both health and disease states, such as ME/CFS.
Collapse
Affiliation(s)
- Chandi T Magawa
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Natalie Eaton-Fitch
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Cassandra Balinas
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Etianne Martini Sasso
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Kiran Thapaliya
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Leighton Barnden
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Rebekah Maksoud
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Breanna Weigel
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- School of Pharmacy and Medical Sciences, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
- Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast Campus, Gold Coast, Qld, Australia
| |
Collapse
|
13
|
Obi P, Natesan S. Membrane Lipids Are an Integral Part of Transmembrane Allosteric Sites in GPCRs: A Case Study of Cannabinoid CB1 Receptor Bound to a Negative Allosteric Modulator, ORG27569, and Analogs. J Med Chem 2022; 65:12240-12255. [PMID: 36066412 PMCID: PMC9512009 DOI: 10.1021/acs.jmedchem.2c00946] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 11/28/2022]
Abstract
A growing number of G-protein-coupled receptor (GPCR) structures reveal novel transmembrane lipid-exposed allosteric sites. Ligands must first partition into the surrounding membrane and take lipid paths to these sites. Remarkably, a significant part of the bound ligands appears exposed to the membrane lipids. The experimental structures do not usually account for the surrounding lipids, and their apparent contribution to ligand access and binding is often overlooked and poorly understood. Using classical and enhanced molecular dynamics simulations, we show that membrane lipids are critical in the access and binding of ORG27569 and its analogs at the transmembrane site of cannabinoid CB1 receptor. The observed differences in the binding affinity and cooperativity arise from the functional groups that interact primarily with lipids. Our results demonstrate the significance of incorporating membrane lipids as an integral component of transmembrane sites for accurate characterization, binding-affinity calculations, and lead optimization in drug discovery.
Collapse
Affiliation(s)
- Peter Obi
- College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington 99202, United States
| | - Senthil Natesan
- College of Pharmacy and Pharmaceutical
Sciences, Washington State University, Spokane, Washington 99202, United States
| |
Collapse
|
14
|
Halim NFAA, Ali MSM, Leow ATC, Rahman RNZRA. Membrane fatty acid desaturase: biosynthesis, mechanism, and architecture. Appl Microbiol Biotechnol 2022; 106:5957-5972. [PMID: 36063178 DOI: 10.1007/s00253-022-12142-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022]
Abstract
Fatty acid desaturase catalyzes the desaturation reactions by inserting double bonds into the fatty acyl chain, producing unsaturated fatty acids, which play a vital part in the synthesis of polyunsaturated fatty acids. Though soluble fatty acid desaturases have been described extensively in advanced organisms, there are very limited studies of membrane fatty acid desaturases due to their difficulties in producing a sufficient amount of recombinant desaturases. However, the advancement of technology has shown substantial progress towards the development of elucidating crystal structures of membrane fatty acid desaturase, thus, allowing modification of structure to be manipulated. Understanding the structure, mechanism, and biosynthesis of fatty acid desaturase lay a foundation for the potential production of various strategies associated with alteration and modifications of polyunsaturated fatty acids. This manuscript presents the current state of knowledge and understanding about the structure, mechanisms, and biosynthesis of fatty acid desaturase. In addition, the role of unsaturated fatty acid desaturases in health and diseases is also encompassed. This will be useful in understanding the molecular basis and structural protein of fatty acid desaturase that are significant for the advancement of therapeutic strategies associated with the improvement of health status. KEY POINTS: • Current state of knowledge and understanding about the biosynthesis, mechanisms, and structure of fatty acid desaturase. • The role of unsaturated fatty acid desaturase. • The molecular basis and structural protein elucidated the crystal structure of fatty acid desaturase.
Collapse
Affiliation(s)
- Nur Farah Anis Abd Halim
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
15
|
Gold nanomaterials and their potential use as cryo-electron tomography labels. J Struct Biol 2022; 214:107880. [PMID: 35809758 DOI: 10.1016/j.jsb.2022.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 06/30/2022] [Accepted: 07/04/2022] [Indexed: 12/14/2022]
Abstract
Rapid advances in cryo-electron tomography (cryo-ET) are driving a revolution in cellular structural biology. However, unambiguous identification of specific biomolecules within cellular tomograms remains challenging. Overcoming this obstacle and reliably identifying targets in the crowded cellular environment is of major importance for the understanding of cellular function and is a pre-requisite for high-resolution structural analysis. The use of highly-specific, readily visualised and adjustable labels would help mitigate this issue, improving both data quality and sample throughput. While progress has been made in cryo-CLEM and in the development of cloneable high-density tags, technical issues persist and a robust 'cryo-GFP' remains elusive. Readily-synthesized gold nanomaterials conjugated to small 'affinity modules' may represent a solution. The synthesis of materials including gold nanoclusters (AuNCs) and gold nanoparticles (AuNPs) is increasingly well understood and is now within the capabilities of non-specialist laboratories. The remarkable chemical and photophysical properties of <3nm diameter nanomaterials and their emergence as tools with widespread biomedical application presents significant opportunities to the cryo-microscopy community. In this review, we will outline developments in the synthesis, functionalisation and labelling uses of both AuNPs and AuNCs in cryo-ET, while discussing their potential as multi-modal probes for cryo-CLEM.
Collapse
|
16
|
Birch J, Quigley A. The high-throughput production of membrane proteins. Emerg Top Life Sci 2021; 5:655-663. [PMID: 34623416 PMCID: PMC8726054 DOI: 10.1042/etls20210196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 09/11/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022]
Abstract
Membrane proteins, found at the junctions between the outside world and the inner workings of the cell, play important roles in human disease and are used as biosensors. More than half of all therapeutics directly affect membrane protein function while nanopores enable DNA sequencing. The structural and functional characterisation of membrane proteins is therefore crucial. However, low levels of naturally abundant protein and the hydrophobic nature of membrane proteins makes production difficult. To maximise success, high-throughput strategies were developed that rely upon simple screens to identify successful constructs and rapidly exclude those unlikely to work. Parameters that affect production such as expression host, membrane protein origin, expression vector, fusion-tags, encapsulation reagent and solvent composition are screened in parallel. In this way, constructs with divergent requirements can be produced for a variety of structural applications. As structural techniques advance, sample requirements will change. Single-particle cryo-electron microscopy requires less protein than crystallography and as cryo-electron tomography and time-resolved serial crystallography are developed new sample production requirements will evolve. Here we discuss different methods used for the high-throughput production of membrane proteins for structural biology.
Collapse
Affiliation(s)
- James Birch
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| | - Andrew Quigley
- Membrane Protein Laboratory, Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K
- Research Complex at Harwell (RCaH), Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K
| |
Collapse
|
17
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
18
|
Podolsky IA, Schauer EE, Seppälä S, O'Malley MA. Identification of novel membrane proteins for improved lignocellulose conversion. Curr Opin Biotechnol 2021; 73:198-204. [PMID: 34482155 DOI: 10.1016/j.copbio.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new membrane proteins that enable the broad uptake of hydrolyzed substrates. Whereas glucose consumption rarely presents a bottleneck for cell factories, there is also a lack of transporters that allow co-consumption of glucose with other abundant biomass sugars such as xylose. This review discusses recent efforts to bioinformatically identify membrane proteins of high biotech potential for lignocellulose conversion and metabolic engineering in both model and nonconventional organisms. Of particular interest are transporters sourced from anaerobic gut fungi resident to large herbivores, which produce Sugars Will Eventually be Exported Transporters (SWEETs) that enhance xylose transport in the yeast Saccharomyces cerevisiae and enable glucose and xylose co-utilization. Additionally, recently identified fungal cellodextrin transporters are valuable alternatives to mitigate glucose repression and transporter inhibition.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elizabeth E Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA.
| |
Collapse
|
19
|
Structural Biology and Structure-Function Relationships of Membrane Proteins. BIOLOGY 2021; 10:biology10030245. [PMID: 33809831 PMCID: PMC8004159 DOI: 10.3390/biology10030245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/17/2021] [Indexed: 12/22/2022]
|