1
|
Xu W, Wei H, Zhang T. Methods of prolonging the effect of caudal block in children. Front Pediatr 2024; 12:1406263. [PMID: 38887564 PMCID: PMC11180814 DOI: 10.3389/fped.2024.1406263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Caudal epidural blockade is one of the most frequently administered regional anesthesia techniques in children. It is a supplement during general anesthesia and for providing postoperative analgesia in pediatrics for sub-umbilical surgeries, especially for genitourinary surgeries. However, the duration of the analgesic effect is occasionally unsatisfactory. In this review, we discuss the main advantages and disadvantages of different techniques to prolong postoperative analgesia for single-injection caudal blockade in children. A literature search of the keywords "caudal", "analgesia", "pediatric", and "children" was performed using PubMed and Web of Science databases. We highlight that analgesic quality correlates substantially with the local anesthetic's type, dose, the timing relationship between caudal block and surgery, caudal catheterization, and administration of epidural opioids or other adjuvant drugs.
Collapse
Affiliation(s)
| | | | - Tao Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Qin W, Li YH, Tong J, Wu J, Zhao D, Li HJ, Xing L, He CX, Zhou X, Li PQ, Meng G, Wu SP, Cao HL. Rational Design and Synthesis of 3-Morpholine Linked Aromatic-Imino-1H-Indoles as Novel Kv1.5 Channel Inhibitors Sharing Vasodilation Effects. Front Mol Biosci 2022; 8:805594. [PMID: 35141279 PMCID: PMC8819089 DOI: 10.3389/fmolb.2021.805594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/28/2021] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is the most common clinical sustained arrhythmia; clinical therapeutic drugs have low atrial selectivity and might cause more severe ventricle arrhythmias while stopping AF. As an anti-AF drug target with high selectivity on the atrial muscle cells, the undetermined crystal structure of Kv1.5 potassium channel impeded further new drug development. Herein, with the simulated 3D structure of Kv1.5 as the drug target, a series of 3-morpholine linked aromatic amino substituted 1H-indoles as novel Kv1.5 channel inhibitors were designed and synthesized based on target–ligand interaction analysis. The synthesis route was practical, starting from commercially available material, and the chemical structures of target compounds were characterized. It was indicated that compounds T16 and T5 (100 μM) exhibited favorable inhibitory activity against the Kv1.5 channel with an inhibition rate of 70.8 and 57.5% using a patch clamp technique. All compounds did not exhibit off-target effects against other drug targets, which denoted some selectivity on the Kv1.5 channel. Interestingly, twelve compounds exhibited favorable vasodilation activity on pre-contracted arterial rings in vitro using KCl or phenylephrine (PE) by a Myograph. The vasodilation rates of compounds T16 and T4 (100 μM) even reached over 90%, which would provide potential lead compounds for both anti-AF and anti-hypertension new drug development.
Collapse
Affiliation(s)
- Wei Qin
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Yi-Heng Li
- College of Life Sciences, Northwest University, Xi’an, China
| | - Jing Tong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Jie Wu
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
| | - Dong Zhao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Hui-Jin Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Lu Xing
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Chun-Xia He
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Xin Zhou
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Peng-Quan Li
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
| | - Ge Meng
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Fudan University, Shanghai, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Shao-Ping Wu
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| | - Hui-Ling Cao
- Xi’an Key Laboratory of Basic and Translation of Cardiovascular Metabolic Disease, Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic and Translational Medicine, Xi’an Medical University, Xi’an, China
- College of Life Sciences, Northwest University, Xi’an, China
- *Correspondence: Ge Meng, ; Shao-Ping Wu, ; Hui-Ling Cao,
| |
Collapse
|
3
|
Mokrov GV. Linked biaromatic compounds as cardioprotective agents. Arch Pharm (Weinheim) 2021; 355:e2100428. [PMID: 34967027 DOI: 10.1002/ardp.202100428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/08/2022]
Abstract
Cardiovascular diseases (CVDs) are widespread in the modern world, and their number is constantly growing. For a long time, CVDs have been the leading cause of morbidity and mortality worldwide. Drugs for the treatment of CVD have been developed almost since the beginning of the 20th century, and a large number of effective cardioprotective agents of various classes have been created. Nevertheless, the need for the design and development of new safe drugs for the treatment of CVD remains. Literature data indicate that a huge number of cardioprotective agents of various generations and mechanisms correspond to a single generalized pharmacophore model containing two aromatic nuclei linked by a linear linker. In this regard, we put forward a concept for the design of a new generation of cardioprotective agents with a multitarget mechanism of action within the indicated pharmacophore model. This review is devoted to a generalization of the currently known compounds with cardioprotective properties and corresponding to the pharmacophore model of biaromatic compounds linked by a linear linker. Particular attention is paid to the history of the creation of these drugs, approaches to their design, and analysis of the structure-action relationship within each class.
Collapse
Affiliation(s)
- Grigory V Mokrov
- Department of Medicinal Chemistry, FSBI "Zakusov Institute of Pharmacology", Moscow, Russia
| |
Collapse
|
4
|
Quinazolinone dimers as a potential new class of safer Kv1 inhibitors: Overcoming hERG, sodium and calcium channel affinities. Bioorg Chem 2021; 115:105264. [PMID: 34416509 DOI: 10.1016/j.bioorg.2021.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 07/11/2021] [Accepted: 08/07/2021] [Indexed: 11/24/2022]
Abstract
The discovery of more selective and safer voltage-gated potassium channel blockers is an extremely demanding approach. Designing selective Kv1.5 inhibitors is very challenging as only limited data is available on this target due to a lacking crystal structure for this ion channel receptor. Herein, we synthesized a series of 21 novel quinazolinone dimers 3a-i, 5a-i and 10a-c. We tried to avoid structural features responsible for non-selectivity and for most potassium channel blockers' side effects in our design. In contrast to other works, which lack investigation over wide ranges of potassium and sodium channels, we screened the inhibitory activity of our synthesized compounds over multiple voltage-gated potassium channels, including six different human Kv1 channel subtypes Kv1.1, Kv1.2, Kv1.3, Kv1.4, Kv1.5 and Kv1.6 channels as well as Kv2.1, Kv3.1, Kv4.3, Kv7.2, Kv7.3, Kv10.1, hERG, and Shaker IR. Moreover, these compounds' selectivity was investigated on sodium channels Nav1.2, Nav1.4 and Nav1.5 and calcium channels Cav3.1-Cav3.3. The results revealed two compounds (3a and 3e) with low micromolar Kv1.5 inhibition activity with EC50 values of 5.1 ± 0.9 µM and 12.5 ± 1.1 µM, respectively. However, at higher concentrations, they also showed inhibitory activity on Kv1.3 and Kv1.1 channels. This might be due to structural similarities between these three Kv1 channel isoforms. Compound 3a shows a slight preference for Kv1.5. Interestingly, they lack any activity on other potassium channels (including hERG), sodium channels, and calcium channels. Our findings recommend quinazolinone dimers with ethylene linker as a potential new class of safer Kv1 inhibitors and a good start for designing more selective and potent Kv1.5 inhibitors.
Collapse
|