1
|
Madhubala D, Mahato R, Khan MR, Bala A, Mukherjee AK. Neurotrophin peptidomimetics for the treatment of neurodegenerative diseases. Drug Discov Today 2024; 29:104156. [PMID: 39233307 DOI: 10.1016/j.drudis.2024.104156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
Neurotrophins, such as nerve growth factor and brain-derived neurotrophic factor, play an essential role in the survival of neurons. However, incorporating better features can increase their therapeutic efficacy in neurodegenerative diseases (NDs). Peptidomimetics, which mimic these neurotrophins, show potential for treating NDs. This study emphasizes the use of peptidomimetics from neurotrophins for treating NDs and their benefits. By improving bioavailability and stability, these molecules can completely transform the therapy for NDs. This in-depth review guides researchers and pharmaceutical developers, providing insight into the changing field of neurodegenerative medicine.
Collapse
Affiliation(s)
- Dev Madhubala
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India
| | - Rosy Mahato
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Mojibur R Khan
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Asis Bala
- Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India; Division of Life Sciences, Institute of Advanced Study in Science and Technology, Vigyan Path, Paschim Boragaon, Garchuk, Guwahati 781035, Assam, India; Faculty of Science, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
2
|
Li Y, Zhang B, Xu J, Jiang X, Jing L, Tian Y, Wang K, Zhang J. Inhibiting the JNK Signaling Pathway Attenuates Hypersensitivity and Anxiety-Like Behavior in a Rat Model of Non-specific Chronic Low Back Pain. J Mol Neurosci 2024; 74:73. [PMID: 39046556 DOI: 10.1007/s12031-024-02252-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Low back pain (LBP) has become a leading cause of disability worldwide. Astrocyte activation in the spinal cord plays an important role in the maintenance of latent sensitization of dorsal horn neurons in LBP. However, the role of spinal c-Jun N-terminal kinase (JNK) in astrocytes in modulating pain behavior of LBP model rats and its neurobiological mechanism have not been elucidated. Here, we investigate the role of the JNK signaling pathway on hypersensitivity and anxiety-like behavior caused by repetitive nerve growth factor (NGF) injections in male non-specific LBP model rats. LBP was produced by two injections (day 0, day 5) of NGF into multifidus muscle of the low backs of rats. We observed prolonged mechanical and thermal hypersensitivity in the low backs or hindpaws. Persistent anxiety-like behavior was observed, together with astrocyte, p-JNK, and neuronal activation and upregulated expression of monocyte chemoattractant protein-1 (MCP-1), and chemokine (C-X-C motif) ligand 1 (CXCL1) proteins in the spinal L2 segment. Second, the JNK inhibitor SP600125 was intrathecally administrated in rats from day 10 to day 12. It attenuated mechanical and thermal hypersensitivity of the low back or hindpaws and anxiety-like behavior. Meanwhile, SP600125 decreased astrocyte and neuronal activation and the expression of MCP-1 and CXCL1 proteins. These results showed that hypersensitivity and anxiety-like behavior induced by NGF in LBP rats could be attenuated by the JNK inhibitor, together with downregulation of spinal astrocyte activation, neuron activation, and inflammatory cytokines. Our results indicate that intervening with the spinal JNK signaling pathway presents an effective therapeutic approach to alleviating LBP.
Collapse
Affiliation(s)
- Yifan Li
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Bingyu Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Jie Xu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
| | - Xiao Jiang
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Liang Jing
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The Second Affiliated Hospital of Anhui Medical University, Hefei, 230000, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China
- The School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230000, China
- Collaborative Innovation Center for Neuropsychiatric Disorders and Mental Health, Hefei, 230000, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China
| | - Juanjuan Zhang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, 230000, Anhui Province, China.
| |
Collapse
|
3
|
Atkinson E, Dickman R. Growth factors and their peptide mimetics for treatment of traumatic brain injury. Bioorg Med Chem 2023; 90:117368. [PMID: 37331175 DOI: 10.1016/j.bmc.2023.117368] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
Traumatic brain injury (TBI) is a leading cause of disability in adults, caused by a physical insult damaging the brain. Growth factor-based therapies have the potential to reduce the effects of secondary injury and improve outcomes by providing neuroprotection against glutamate excitotoxicity, oxidative damage, hypoxia, and ischemia, as well as promoting neurite outgrowth and the formation of new blood vessels. Despite promising evidence in preclinical studies, few neurotrophic factors have been tested in clinical trials for TBI. Translation to the clinic is not trivial and is limited by the short in vivo half-life of the protein, the inability to cross the blood-brain barrier and human delivery systems. Synthetic peptide mimetics have the potential to be used in place of recombinant growth factors, activating the same downstream signalling pathways, with a decrease in size and more favourable pharmacokinetic properties. In this review, we will discuss growth factors with the potential to modulate damage caused by secondary injury mechanisms following a traumatic brain injury that have been trialled in other indications including spinal cord injury, stroke and neurodegenerative diseases. Peptide mimetics of nerve growth factor (NGF), hepatocyte growth factor (HGF), glial cell line-derived growth factor (GDNF), brain-derived neurotrophic factor (BDNF), platelet-derived growth factor (PDGF) and fibroblast growth factor (FGF) will be highlighted, most of which have not yet been tested in preclinical or clinical models of TBI.
Collapse
Affiliation(s)
- Emily Atkinson
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK; UCL Centre for Nerve Engineering, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| | - Rachael Dickman
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
4
|
Chen L, Ye T, Wang X, Han L, Wang T, Qi D, Cheng X. The Mechanisms Underlying the Pharmacological Effects of GuiPi Decoction on Major Depressive Disorder based on Network Pharmacology and Molecular Docking. Comb Chem High Throughput Screen 2023; 26:1701-1728. [PMID: 36045534 DOI: 10.2174/1386207325666220831152959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/12/2022] [Accepted: 07/16/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIM Major Depressive Disorder (MDD) is a common affective disorder. GuiPi decoction (GPD) is used to treat depression in China, Japan, and Korea. However, its effective ingredients and antidepressant mechanisms remain unclear. We attempted to reveal the potential mechanisms of GPD in the treatment of MDD by network pharmacology and molecular docking. In addition, we conducted an enzymatic activity assay to validate the results of molecular docking. METHODS GPD-related compounds and targets, and MDD-related targets were retrieved from databases and literature. The herb-compound-target network was constructed by Cytoscape. The protein- protein interaction network was built using the STRING database to find key targets of GPD on MDD. Enrichment analysis of shared targets was analyzed by MetaCore database to obtain the potential pathway and biological process of GPD on MDD. The main active compounds treating MDD were screened by molecular docking. The PDE4s inhibitors were screened and verified by an enzyme activity assay. RESULTS GPD contained 1222 ingredients and 190 potential targets for anti-MDD. Possible biological processes regulated by GPD were neurophysiological processes, blood vessel morphogenesis, Camp Responsive Element Modulator (CREM) pathway, and Androgen Receptor (AR) signaling crosstalk in MDD. Potential pathways in MDD associated with GPD include neurotransmission, cell differentiation, androgen signaling, and estrogen signaling. Fumarine, m-cresol, quercetin, betasitosterol, fumarine, taraxasterol, and lupeol in GPD may be the targets of SLC6A4, monoamine oxidase A (MAOA), DRD2, OPRM1, HTR3A, Albumin (ALB), and NTRK1, respectively. The IC50 values of trifolin targeting Phosphodiesterase (PDE) 4A and girinimbine targeting PDE4B1 were 73.79 μM and 31.86 μM, respectively. The IC50 values of girinimbine and benzo[a]carbazole on PDE4B2 were 51.62 μM and 94.61 μM, respectively. CONCLUSION Different compounds in GPD may target the same protein, and the same component in GPD can target multiple targets. These results suggest that the effects of GPD on MDD are holistic and systematic, unlike the pattern of one drug-one target.
Collapse
Affiliation(s)
- Liyuan Chen
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianyuan Ye
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaolong Wang
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lu Han
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Tongxing Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin 300410, China
| | - Dongmei Qi
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaorui Cheng
- Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
5
|
Russo L, Giacomelli C, Fortino M, Marzo T, Ferri G, Calvello M, Viegi A, Magrì A, Pratesi A, Pietropaolo A, Cardarelli F, Martini C, Rizzarelli E, Marchetti L, La Mendola D, Trincavelli ML. Neurotrophic Activity and Its Modulation by Zinc Ion of a Dimeric Peptide Mimicking the Brain-Derived Neurotrophic Factor N-Terminal Region. ACS Chem Neurosci 2022; 13:3453-3463. [PMID: 36346920 PMCID: PMC9732821 DOI: 10.1021/acschemneuro.2c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) essential for neuronal development and synaptic plasticity. Dysregulation of BDNF signaling is implicated in different neurological disorders. The direct NT administration as therapeutics has revealed to be challenging. This has prompted the design of peptides mimicking different regions of the BDNF structure. Although loops 2 and 4 have been thoroughly investigated, less is known regarding the BDNF N-terminal region, which is involved in the selective recognition of the TrkB receptor. Herein, a dimeric form of the linear peptide encompassing the 1-12 residues of the BDNF N-terminal (d-bdnf) was synthesized. It demonstrated to act as an agonist promoting specific phosphorylation of TrkB and downstream ERK and AKT effectors. The ability to promote TrkB dimerization was investigated by advanced fluorescence microscopy and molecular dynamics (MD) simulations, finding activation modes shared with BDNF. Furthermore, d-bdnf was able to sustain neurite outgrowth and increase the expression of differentiation (NEFM, LAMC1) and polarization markers (MAP2, MAPT) demonstrating its neurotrophic activity. As TrkB activity is affected by zinc ions in the synaptic cleft, we first verified the ability of d-bdnf to coordinate zinc and then the effect of such complexation on its activity. The d-bdnf neurotrophic activity was reduced by zinc complexation, demonstrating the role of the latter in tuning the activity of the new peptido-mimetic. Taken together our data uncover the neurotrophic properties of a novel BDNF mimetic peptide and pave the way for future studies to understand the pharmacological basis of d-bdnf action and develop novel BDNF-based therapeutic strategies.
Collapse
Affiliation(s)
- Lara Russo
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | | | | | - Tiziano Marzo
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | - Gianmarco Ferri
- Laboratorio
NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | | | | | - Antonio Magrì
- Istituto
di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Catania 95126, Italy
| | - Alessandro Pratesi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Pisa 56124, Italy
| | | | | | - Claudia Martini
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | - Enrico Rizzarelli
- Istituto
di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Catania 95126, Italy,Università
degli Studi di Catania, Catania 95124, Italy
| | - Laura Marchetti
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy,
| | - Diego La Mendola
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy,
| | | |
Collapse
|
6
|
Vittorio S, Manelfi C, Gervasoni S, Beccari AR, Pedretti A, Vistoli G, Talarico C. Computational Insights into the Sequence-Activity Relationships of the NGF(1–14) Peptide by Molecular Dynamics Simulations. Cells 2022; 11:cells11182808. [PMID: 36139382 PMCID: PMC9497175 DOI: 10.3390/cells11182808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
The Nerve Growth Factor (NGF) belongs to the neurothrophins protein family involved in the survival of neurons in the nervous system. The interaction of NGF with its high-affinity receptor TrkA mediates different cellular pathways related to Alzheimer’s disease, pain, ocular dysfunction, and cancer. Therefore, targeting NGF-TrkA interaction represents a valuable strategy for the development of new therapeutic agents. In recent years, experimental studies have revealed that peptides belonging to the N-terminal domain of NGF are able to partly mimic the biological activity of the whole protein paving the way towards the development of small peptides that can selectively target specific signaling pathways. Hence, understanding the molecular basis of the interaction between the N-terminal segment of NGF and TrkA is fundamental for the rational design of new peptides mimicking the NGF N-terminal domain. In this study, molecular dynamics simulation, binding free energy calculations and per-residue energy decomposition analysis were combined in order to explore the molecular recognition pattern between the experimentally active NGF(1–14) peptide and TrkA. The results highlighted the importance of His4, Arg9 and Glu11 as crucial residues for the stabilization of NGF(1–14)-TrkA interaction, thus suggesting useful insights for the structure-based design of new therapeutic peptides able to modulate NGF-TrkA interaction.
Collapse
Affiliation(s)
- Serena Vittorio
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Candida Manelfi
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
| | - Silvia Gervasoni
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
- Department of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Andrea R. Beccari
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
| | - Alessandro Pedretti
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Giulio Vistoli
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Via Mangiagalli, 25, I-20133 Milano, Italy
| | - Carmine Talarico
- Dompé Farmaceutici SpA, EXSCALATE, Via Tommaso De Amicis, 95, I-80131 Napoli, Italy
- Correspondence:
| |
Collapse
|
7
|
Triaca V, Fico E, Rosso P, Ralli M, Corsi A, Severini C, Crevenna A, Agostinelli E, Rullo E, Riminucci M, Colizza A, Polimeni A, Greco A, Tirassa P. Pilot Investigation on p75ICD Expression in Laryngeal Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:cancers14112622. [PMID: 35681602 PMCID: PMC9179539 DOI: 10.3390/cancers14112622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/06/2023] Open
Abstract
We investigated the p75 Neurotrophin Receptor (p75NTR) expression and cleavage product p75NTR Intracellular Domain (p75ICD) as potential oncogenic and metastatic markers in human Laryngeal Squamous Cell Carcinoma (LSCC). p75NTR is highly expressed in Cancer Stem Cells (CSCs) of the laryngeal epithelia and it has been proposed as a marker for stemness, cell migration, and chemo-resistance in different squamous carcinomas. To investigate the clinical significance of p75NTR cleavage products in solid tumors, full-length and cleaved p75NTR expression was analyzed in laryngeal primary tumors from different-stage LSCC patients, diagnosed at the Policlinico Umberto I Hospital. Molecular and histological techniques were used to detect the expressions of p75NTR and p75ICD, and ATP Binding Cassette Subfamily G Member 2 (ABCG2), a CSC marker. We found regulated p75NTR cleavage during squamous epithelial tumor progression and tissue invasion. Our preliminary investigation suggests p75ICD expression and localization as possible features of tumorigenesis and metastaticity. Its co-localization with ABCG2 in squamous cells in the parenchyma invaded by the tumor formation allows us to hypothesize p75NTR and p75ICD roles in tumor invasion and CSC spreading in LSCC patients. These data might represent a starting point for a comprehensive analysis of p75NTR cleavage and of its clinical relevance as a potential molecular LSCC signature, possibly helping diagnosis, and improving prognosis and personalized therapy.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), International Campus A. Buzzati-Traverso, Monterotondo Scalo, 00015 Rome, Italy
- Correspondence: (V.T.); (P.T.)
| | - Elena Fico
- Department of Sense Organs, Institute of Biochemistry and Cell Biology, National Research Council (CNR), University of Rome La Sapienza, 00185 Rome, Italy; (E.F.); (P.R.); (C.S.)
| | - Pamela Rosso
- Department of Sense Organs, Institute of Biochemistry and Cell Biology, National Research Council (CNR), University of Rome La Sapienza, 00185 Rome, Italy; (E.F.); (P.R.); (C.S.)
| | - Massimo Ralli
- Department of Sense Organs, University of Rome La Sapienza, 00185 Rome, Italy; (M.R.); (E.A.); (A.C.); (A.G.)
| | - Alessandro Corsi
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy; (A.C.); (E.R.); (M.R.)
| | - Cinzia Severini
- Department of Sense Organs, Institute of Biochemistry and Cell Biology, National Research Council (CNR), University of Rome La Sapienza, 00185 Rome, Italy; (E.F.); (P.R.); (C.S.)
| | - Alvaro Crevenna
- Epigenetics and Neurobiology Unit, EMBL Rome, International Campus A. Buzzati-Traverso, Monterotondo Scalo, 00015 Rome, Italy;
| | - Enzo Agostinelli
- Department of Sense Organs, University of Rome La Sapienza, 00185 Rome, Italy; (M.R.); (E.A.); (A.C.); (A.G.)
| | - Emma Rullo
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy; (A.C.); (E.R.); (M.R.)
| | - Mara Riminucci
- Department of Molecular Medicine, University of Rome La Sapienza, 00185 Rome, Italy; (A.C.); (E.R.); (M.R.)
| | - Andrea Colizza
- Department of Sense Organs, University of Rome La Sapienza, 00185 Rome, Italy; (M.R.); (E.A.); (A.C.); (A.G.)
| | - Antonella Polimeni
- Department of Oral and Maxillo Facial Sciences, University of Rome La Sapienza, 00185 Rome, Italy;
| | - Antonio Greco
- Department of Sense Organs, University of Rome La Sapienza, 00185 Rome, Italy; (M.R.); (E.A.); (A.C.); (A.G.)
| | - Paola Tirassa
- Department of Sense Organs, Institute of Biochemistry and Cell Biology, National Research Council (CNR), University of Rome La Sapienza, 00185 Rome, Italy; (E.F.); (P.R.); (C.S.)
- Correspondence: (V.T.); (P.T.)
| |
Collapse
|
8
|
Li Y, Wang S, Xiao Y, Liu B, Pang J. Nerve growth factor enhances the therapeutic effect of mesenchymal stem cells on diabetic periodontitis. Exp Ther Med 2021; 22:1013. [PMID: 34373699 DOI: 10.3892/etm.2021.10445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 12/10/2020] [Indexed: 11/05/2022] Open
Abstract
Patients with diabetes frequently suffer from periodontitis, which progresses rapidly and is difficult to cure. Mesenchymal stem cell (MSC) transplantation may effectively treat periodontitis, but high glucose limits its therapeutic effect in diabetes. Nerve growth factor (NGF) has the functions of cell protection, anti-apoptosis and immune regulation, and may have potential application in diabetic periodontitis. In the present study, flow cytometry indicated that NGF inhibited MSC apoptosis induced by high glucose. Of note, high glucose promoted the transformation of MSCs into the proinflammatory type. NGF inhibited this transformation of MSCs under diabetic conditions and further decreased the proportion of T cells and monocytes/macrophages among lymphocytes. An animal model of diabetic periodontitis was constructed and MSC transplantation was demonstrated to reduce alveolar bone loss caused by diabetes. NGF enhanced the therapeutic effect of MSCs and maintained transplanted MSC survival in periodontal tissue of diabetic mice. Immunohistochemical analysis of periodontal tissues suggested that in the NGF group, infiltration of T cells and macrophages was reduced. Neurotrophic receptor tyrosine kinase 1 was indicated to have a key role in these effects of NGF. In conclusion, NGF may enhance the therapeutic effect of MSCs on diabetic periodontitis by protecting the cells and promoting the transformation of MSCs into the immunosuppressive type.
Collapse
Affiliation(s)
- Ying Li
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Suyu Wang
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Yihan Xiao
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Bing Liu
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| | - Jianliang Pang
- Department of Stomatology, Air Force Medical Center, People's Liberation Army, Beijing 100142, P.R. China
| |
Collapse
|
9
|
La Mendola D, Arena G, Pietropaolo A, Satriano C, Rizzarelli E. Metal ion coordination in peptide fragments of neurotrophins: A crucial step for understanding the role and signaling of these proteins in the brain. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16:1740-1750. [PMID: 33510063 PMCID: PMC8328750 DOI: 10.4103/1673-5374.306062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.
Collapse
Affiliation(s)
- Gemma Eftimiadi
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
11
|
Novel Targets and Therapeutic Strategies for Promoting Organ Repair and Regeneration. Biomolecules 2020; 10:biom10050749. [PMID: 32408488 PMCID: PMC7277736 DOI: 10.3390/biom10050749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/09/2020] [Indexed: 11/17/2022] Open
Abstract
Strategies to create functional organs and tissues is of great interest for use in regenerative medicine in order to repair or replace the lost tissues due to injury, disease, as well as aging. Several new treatment options, including stem cell treatments and tissue-engineered substitutes for certain indications, have been approved by Food and Drug Administration (FDA) and are currently available. This special issue will cover new therapies and strategies that are currently being investigated under preclinical and clinical settings.
Collapse
|