1
|
Dias-Costa R, Medrano-Padial C, Fernandes R, Domínguez-Perles R, Gouvinhas I, Barros AN. Valorisation of Winery By-Products: Revealing the Polyphenolic Profile of Grape Stems and Their Inhibitory Effects on Skin Aging-Enzymes for Cosmetic and Pharmaceutical Applications. Molecules 2024; 29:5437. [PMID: 39598826 PMCID: PMC11597129 DOI: 10.3390/molecules29225437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/09/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
Grape (Vitis vinifera L.) stems, a by-product of winemaking, possess significant potential value due to their rich polyphenolic composition, which allows their exploitation for cosmetic and pharmaceutical applications. This presents a promising opportunity for valorisation aimed at developing innovative products with potential health-promoting effects. In this study, the polyphenolic profile of extracts from grape stems of seven white grape varieties was determined using spectrophotometric and chromatographic methods, specifically high-performance liquid chromatography coupled with a photodiode array detector and electrospray ionization multi-stage mass spectrometry (HPLC-PDA-ESI-MSn), as well as on their ferric-reducing antioxidant power (FRAP) and radical scavenging capacity, using 2,2-diphenyl-1-picrylhydrazyl (DPPH●) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS●+) radicals. This study also evaluated the anti-aging activity and skin depigmenting activity of these extracts. These findings revealed a diverse polyphenolic profile, encompassing proanthocyanidins and catechin derivatives (PCDs), phenolic acids, and flavonols. Among the varieties studied, 'Códega do Larinho' exhibited the highest concentrations of six distinct polyphenols and the highest total phenolic content. It also demonstrated the highest results for antioxidant capacity and elastase and tyrosinase inhibition. Pearson's correlation analysis showed a significant positive correlation between certain PCDs with both FRAP and DPPH assays, as well as between the identified flavonols and anti-elastase activity. These results underscore the potential health benefits of grape stem extracts and emphasize the importance of their polyphenolic composition in enhancing antioxidant and anti-aging properties, thus supporting their application in different industries.
Collapse
Affiliation(s)
- Rui Dias-Costa
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| | - Concepción Medrano-Padial
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (EBAS-CSIC), University Campus of Espinardo 25, 30100 Murcia, Spain; (C.M.-P.); (R.D.-P.)
| | - Raquel Fernandes
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| | - Raúl Domínguez-Perles
- Laboratorio de Fitoquímica y Alimentos Saludables (LabFAS), Centro de Edafología y Biología Aplicada del Segura-Spanish Council for Scientific Research (EBAS-CSIC), University Campus of Espinardo 25, 30100 Murcia, Spain; (C.M.-P.); (R.D.-P.)
| | - Irene Gouvinhas
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| | - Ana Novo Barros
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal; (R.F.); (I.G.)
| |
Collapse
|
2
|
Karastergiou A, Gancel AL, Jourdes M, Teissedre PL. Valorization of Grape Pomace: A Review of Phenolic Composition, Bioactivity, and Therapeutic Potential. Antioxidants (Basel) 2024; 13:1131. [PMID: 39334790 PMCID: PMC11428247 DOI: 10.3390/antiox13091131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Vitis vinifera L., commonly known as grapes, is one of the most widely cultivated crops worldwide, with over 80% used for wine production. However, the winemaking process generates substantial residues, including grape pomace (GP), wine lees, and wastewater, which can pose significant environmental and economic challenges. Among these, GP stands out not only as a waste product but also as a rich source of polyphenols-bioactive compounds with recognized antioxidant and anti-inflammatory properties. Recent advancements have expanded the application of GP-derived extracts, particularly in the health and food industries, due to their potent bioactive properties. This review provides a comprehensive overview of the valorization of GP, focusing on its phenolic composition and therapeutic potential. It evokes innovative, environmentally friendly extraction techniques and integrated methods for the chemical analysis of these valuable compounds. Additionally, the health benefits of GP polyphenols are explored, with recent experimental findings examining their metabolism and highlighting the key role of gut microbiota in these processes. These insights contribute to a deeper understanding of the biological activity of GP extracts and underscore their growing significance as a high-added-value product. By illustrating how winemaking by-products can be transformed into natural therapeutic agents, this review emphasizes the importance of sustainable development and eco-friendly waste management practices, significantly contributing to the advancement of a circular economy.
Collapse
Affiliation(s)
| | | | | | - Pierre-Louis Teissedre
- Univ. Bordeaux, INRAE, Bordeaux INP, Bordeaux Sciences Agro, UMR 1366, OENO, ISVV, F-33882 Villenave d’Ornon, France; (A.K.); (A.-L.G.); (M.J.)
| |
Collapse
|
3
|
Ivanov Y, Godjevargova T. Antimicrobial Polymer Films with Grape Seed and Skin Extracts for Food Packaging. Microorganisms 2024; 12:1378. [PMID: 39065146 PMCID: PMC11279212 DOI: 10.3390/microorganisms12071378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/22/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The development of antimicrobial food packaging is a very important and current goal, but it still difficult to implement in practice. Reducing microbial contamination and preserving food quality are very important tasks for food manufacturers as the use of antimicrobial packaging can preserve the health of consumers. On the other hand, the difficulty of degrading packaging materials, leading to environmental pollution, is also an important problem. These problems can be solved by using biodegradable biopolymers and antimicrobial agents in the production of food packaging. Very suitable antimicrobial agents are grape seed and skin extracts as they have high antioxidant and antimicrobial capacity and are obtained from grape pomace, a waste product of winemaking. The present review presents the valuable bioactive compounds contained in grape seeds and skins, the methods used to obtain the extracts, and their antimicrobial and antioxidant properties. Then, the application of grape seed and skin extracts for the production of antimicrobial packaging is reviewed. Emphasis is placed on antimicrobial packaging based on various biopolymers. Special attention is also paid to the application of the extract of grape skins to obtain intelligent indicator packages for the continuous monitoring of the freshness and quality of foods. The focus is mainly placed on the antimicrobial properties of the packaging against different types of microorganisms and their applications for food packaging. The presented data prove the good potential of grape seed and skin extracts to be used as active agents in the preparation of antimicrobial food packaging.
Collapse
Affiliation(s)
| | - Tzonka Godjevargova
- Department Biotechnology, University “prof. d-r A. Zlatarov”, 8010 Burgas, Bulgaria;
| |
Collapse
|
4
|
Mottaghi S, Abbaszadeh H. Grape seed extract in combination with deferasirox ameliorates iron overload, oxidative stress, inflammation, and liver dysfunction in beta thalassemia children. Complement Ther Clin Pract 2023; 53:101804. [PMID: 37832335 DOI: 10.1016/j.ctcp.2023.101804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND PURPOSE Iron overload in the body is associated with serious and irreversible tissue damage. This study aimed to investigate the iron-chelating, antioxidant, anti-inflammatory, and hepatoprotective activities of grape seed extract (GSE) supplement as well as its safety in β-thalassemia major (β-TM) pediatric patients receiving deferasirox as a standard iron-chelation therapy. MATERIALS AND METHODS The children were randomly allocated to either GSE group (n = 30) or control group (n = 30) to receive GSE (100 mg/day) or placebo capsules, respectively, for 4 weeks. The serum levels of iron, ferritin, total iron-binding capacity (TIBC), alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor alpha (TNF-α), high-sensitivity C-reactive protein (hs-CRP), malondialdehyde (MDA), and glutathione (GSH) as well as superoxide dismutase (SOD) activity and hemoglobin (Hb) concentration were measured pre-and post-intervention. RESULTS GSE supplement significantly attenuated the serum levels of iron (p = 0.030), ferritin (p = 0.017), ALT (p = 0.000), AST (p = 0.000), TNF-α (p = 0.000), and hs-CRP (p = 0.001). The TIBC level (p = 0.020) significantly enhanced in the GSE group compared with the placebo group. Moreover, GSE supplement remarkably improved the oxidative stress markers, MDA (p = 0.000) and GSH (p = 0.001). The changes in the SOD activity (p = 0.590) and Hb concentration (p = 0.670) were not statistically different between the groups. CONCLUSION GSE supplement possesses several health beneficial influences on children with β-TM by alleviating iron burden, oxidative stress, inflammation, and liver dysfunction.
Collapse
Affiliation(s)
- Sayeh Mottaghi
- Department of Pediatrics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hassan Abbaszadeh
- Department of Pharmacology, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
5
|
Hofmann T, Makk ÁN, Albert L. Extraction of (+)-catechin from oak ( Quercus spp.) bark: Optimization of pretreatment and extraction conditions. Heliyon 2023; 9:e22024. [PMID: 38027666 PMCID: PMC10665808 DOI: 10.1016/j.heliyon.2023.e22024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 12/01/2023] Open
Abstract
Oaks (Quercus L., Fagaceae) are a widespread tree species worldwide, and in Hungary they account for nearly 30 % of the forests. Their wood is valuable, but their bark is considered as a by-product. Oak bark, available in large quantities but with no dedicated use, contains a significant amount of valuable extractives. Its (+)-catechin content is around 1 %. (+)-Catechin is mostly used for food industry, medicine and many other industrial purposes, representing a significant financial value. The aim of the present research was to compare the (+)-catechin concentrations in the bark of the most important oak species found in Hungary and to optimize sample pretreatment (conservation) and extraction methods in order to achieve fast and efficient extraction. From these species the highest concentrations were measured in Q. robur and Q. robur ssp. slavonica (8-12 mg (+)-catechin/g dry bark). The combination of microwave sample pretreatment and microwave assisted extraction proved to be the most time- and cost-effective method. The utilization of the extracted bark powder for energetic purposes requires further investigations.
Collapse
Affiliation(s)
- Tamás Hofmann
- University of Sopron, Institute of Environmental Protection and Nature Conservation, H-9400, Bajcsy-Zsilinszky Str. 4, Sopron, Hungary
| | - Ádám Nándor Makk
- DMRV Zrt., Division of Environmental and Water Quality Protection, H-2600, Kodály Zoltán Str. 3, Vác, Hungary
| | - Levente Albert
- University of Sopron, Institute of Environmental Protection and Nature Conservation, H-9400, Bajcsy-Zsilinszky Str. 4, Sopron, Hungary
| |
Collapse
|
6
|
A Review on Berry Seeds—A Special Emphasis on Their Chemical Content and Health-Promoting Properties. Nutrients 2023; 15:nu15061422. [PMID: 36986152 PMCID: PMC10058722 DOI: 10.3390/nu15061422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Berries are important components of the human diet, valued for their high content of nutrients and active compounds. Berry seeds are also important objects of scientific investigation as, in some cases, they can have a higher concentration of certain phytochemicals than other parts of the fruit. Moreover, they are often byproducts of the food industry that can be reused to make oil, extracts, or flour. We have reviewed available literature related to the chemical content and biological activity of seeds from five different berry species—red raspberry (Rubus idaeus L. and Rubus coreanus Miq.), strawberry (Fragaria x ananassa), grape (Vitis vinifera L.), sea buckthorn (Hippophae rhamnoides L.), and cranberry (Vaccinium macrocarpon Ait.). We have searched various databases, including PubMed, Web of Knowledge, ScienceDirect, and Scopus. Last search was conducted on 16.01.2023. Various preparations from berry seeds are valuable sources of bioactive phytochemicals and could be used as functional foods or to make pharmaceuticals or cosmetics. Some products, like oil, flour, or extracts, are already available on the market. However, many preparations and compounds still lack appropriate evidence for their effectiveness in vivo, so their activity should first be assessed in animal studies and clinical trials.
Collapse
|
7
|
Phenolic Fraction from Peanut ( Arachis hypogaea L.) By-product: Innovative Extraction Techniques and New Encapsulation Trends for Its Valorization. FOOD BIOPROCESS TECH 2023; 16:726-748. [PMID: 36158454 PMCID: PMC9483447 DOI: 10.1007/s11947-022-02901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Peanut skin is a by-product rich in bioactive compounds with high nutritional and pharmaceutical values. The phenolic fraction, rich in proanthocyanidins/procyanidins, is a relevant class of bioactive compounds, which has been increasingly applied as functional ingredients for food and pharmaceutical applications and is mostly recovered from peanut skins through low-pressure extraction methods. Therefore, the use of green high-pressure extractions is an interesting alternative to value this peanut by-product. This review addresses the benefits of the phenolic fraction recovered from peanut skin, with a focus on proanthocyanin/procyanidin compounds, and discusses the improvement of their activity, bioavailability, and protection, by methods such as encapsulation. Different applications for the proanthocyanidins, in the food and pharmaceutical industries, are also explored. Additionally, high-pressure green extraction methods, combined with micro/nanoencapsulation, using wall material derived from peanut industrial processing, may represent a promising biorefinery strategy to improve the bioavailability of proanthocyanidins recovered from underutilized peanut skins.
Collapse
|
8
|
Paramita V, Masruchin N, Wirohadidjojo YW, Puruhito B, Ariyanto HD, Yulianto ME, Hartati I, Yohana E, Hidayatulloh F, Sutrisno T, Wijayanto B. Multiple response optimizations on the leached-spray-dried bancha green tea towards healthy ageing. Sci Rep 2022; 12:21347. [PMID: 36494428 PMCID: PMC9734194 DOI: 10.1038/s41598-022-25644-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Bancha is a popular type of green tea in Japan, rich in tea polyphenols (TPs) and has a more astringent aroma with a less aromatic and strong character that complements functional foods. The blanching process is used to extract TPs and remove unwanted microorganisms, as well as inhibit phenolic oxidation. This study proposed a green tea blanching process followed by spray drying the extracts with maltodextrin. Furthermore, it is focused on maximizing the major chemical components of green tea (i.e., catechins, caffeine, and phenolic contents) based on powder particle size obtained through Multiple Response Surface Methodology optimizations. The results show that the proposed model accurately predicts leached-spray dried green tea's total catechin and caffeine content, with a coefficient of 0.9475 and 0.8692, respectively. This process yielded composite desirability of 0.9751, while individual desirability yielded excellent results of 1.0000, 0.9188, 1.0000, and 0.9839 for catechin, caffeine, phenol content, and powder. The settings appear to yield functional results for entire responses. Due to the concerns in tropical skin nutrition applications, smaller particle size green tea can promote better adsorption than larger sizes.
Collapse
Affiliation(s)
- Vita Paramita
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | - Nanang Masruchin
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency of Indonesia (BRIN), Cibinong, Bogor, 16911 Indonesia
| | - Yohanes Widodo Wirohadidjojo
- grid.8570.a0000 0001 2152 4506Department of Dermatology and Venereology, Gadjah Mada University, Yogyakarta, 55281 Indonesia
| | - Buwono Puruhito
- grid.412032.60000 0001 0744 0787Department of Dermatology and Venereology, Diponegoro University, Semarang, 50275 Indonesia
| | - Hermawan Dwi Ariyanto
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | - Mohamad Endy Yulianto
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | - Indah Hartati
- Department of Chemical Engineering, Wahid Hasyim University, Semarang, 50232 Indonesia
| | - Eflita Yohana
- grid.412032.60000 0001 0744 0787Department of Mechanical Engineering, Diponegoro University, Semarang, 50275 Indonesia
| | | | - Tris Sutrisno
- grid.412032.60000 0001 0744 0787Department of Technology Industry, Diponegoro University, Semarang, 50275 Indonesia
| | | |
Collapse
|
9
|
Peixoto FB, Raimundini Aranha AC, Nardino DA, Defendi RO, Suzuki RM. Extraction and encapsulation of bioactive compounds: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fernanda Barroso Peixoto
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | | | | | - Rafael Oliveira Defendi
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| | - Rúbia Michele Suzuki
- Chemical Engineering Graduate Program (PPGEQ‐AP) Federal Technological University of Paraná (UTFPR) Apucarana Brazil
| |
Collapse
|
10
|
Jin Z, Jiang W, Luo Y, Huang H, Yi D, Pang Y. Analyses on Flavonoids and Transcriptome Reveals Key MYB Gene for Proanthocyanidins Regulation in Onobrychis Viciifolia. FRONTIERS IN PLANT SCIENCE 2022; 13:941918. [PMID: 35812930 PMCID: PMC9263696 DOI: 10.3389/fpls.2022.941918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 05/30/2022] [Indexed: 05/31/2023]
Abstract
Onobrychis viciifolia (sainfoin) is one of the most high-quality legume forages, which is rich in proanthocyanidins that is beneficial for the health and production of animals. In this study, proanthocyanidins and total flavonoids in leaves of 46 different sainfoin germplasm resources were evaluated, and it showed that soluble proanthocyanidin contents varied greatly in these sainfoin germplasm resources, but total flavonoids did not show significant difference. Transcriptome sequencing with high and low proanthocyanidins sainfoin resulted in the identification of totally 52,926 unigenes in sainfoin, and they were classed into different GOC categories. Among them, 1,608 unigenes were differentially expressed in high and low proanthocyanidins sainfoin samples, including 1,160 genes that were upregulated and 448 genes that were downregulated. Analysis on gene enrichment via KEGG annotation revealed that the differentially expressed genes were mainly enriched in the phenylpropanoid biosynthetic pathway and the secondary metabolism pathway. We also analyzed the expression levels of structural genes of the proanthocyanidin/flavonoid pathway in roots, stems, and leaves in the high proanthocyanidin sainfoin via RT-qPCR and found that these genes were differentially expressed in these tissues. Among them, the expression levels of F3'5'H and ANR were higher in leaves than in roots or stems, which is consistent with proanthocyanidins content in these tissues. Among MYB genes that were differentially expressed, the expression of OvMYBPA2 was relatively high in high proanthocyanidin sainfoin. Over-expression level of OvMYBPA2 in alfalfa hairy roots resulted in decreased anthocyanin content but increased proanthocyanidin content. Our study provided transcriptome information for further functional characterization of proanthocyanidin biosynthesis-related genes in sainfoin and candidate key MYB genes for bioengineering of proanthocyanidins in plants.
Collapse
Affiliation(s)
| | | | | | | | | | - Yongzhen Pang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
11
|
Microwave-Assisted Water Extraction of Aspen (Populus tremula) and Pine (Pinus sylvestris L.) Barks as a Tool for Their Valorization. PLANTS 2022; 11:plants11121544. [PMID: 35736694 PMCID: PMC9228133 DOI: 10.3390/plants11121544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
The barks of aspen (Populus tremula) and pine (Pinus sylvestris) are byproducts of wood processing, characterized by their low economic value. In the present study, microwave-assisted one-cycle water extraction was explored as a tool for the valorization of this biomass as a source of biologically active compounds. The microwave extractor of the original construction equipped with a pressurized extraction chamber and a condenser section was used. The microwave-assisted extraction (MAE), specially including dynamic dielectric heating up to 70 °C followed by 30 min of isothermal heating, promoted the isolation of salicin from aspen bark, allowing for the obtention of a two-times-higher free salicin concentration in water extracts (−14% vs. 7%) reached by multi-cycle accelerated solvent extraction (ASE), which is an advanced technique used as a reference. The MAE of pine bark with dynamic heating up to 90–130 °C, avoiding the isothermal heating step, allowed for the obtention of a 1.7-times-higher concentration of proantocyanidin dimers-tetramers, a 1.3-times-higher concentration of catechin and a 1.2-times-higher concentration of quinic acid in water extracts in comparison to a more time- and solvent-consuming ASE performed at the same temperature. The biological activity of the obtained extracts was characterized in terms of their ability to inhibit xahntine oxidase enzyme, which is a validated target for the therapeutic treatment of hyperuricemia.
Collapse
|
12
|
Optimization of the Extraction of Proanthocyanidins from Grape Seeds Using Ultrasonication-Assisted Aqueous Ethanol and Evaluation of Anti-Steatosis Activity In Vitro. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041363. [PMID: 35209151 PMCID: PMC8877132 DOI: 10.3390/molecules27041363] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/31/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023]
Abstract
Conventional extraction methods of proanthocyanidins (PAC) are based on toxic organic solvents, which can raise concerns about the use of extracts in supplemented food and nutraceuticals. Thus, a PAC extraction method was developed for grape seeds (GS) and grape seed powder using food-grade ethanol by optimizing the extraction conditions to generate the maximum yield of PAC. Extraction parameters, % ethanol, solvent: solid (s:s) ratio, sonication time, and temperature were optimized by the central composite design of the response surface method. The yields of PAC under different extraction conditions were quantified by the methylcellulose precipitable tannin assay. The final optimum conditions were 47% ethanol, 10:1 s:s ratio (v:w), 53 min sonication time, and 60 °C extraction temperature. High-performance liquid chromatography analysis revealed the presence of catechin, procyanidin B2, oligomeric and polymeric PAC in the grape seed-proanthocyanidin extracts (GS-PAC). GS-PAC significantly reduced reactive oxygen species and lipid accumulation in the palmitic-acid-induced mouse hepatocytes (AML12) model of steatosis. About 50% of the PAC of the GS was found to be retained in the by-product of wine fermentation. Therefore, the developed ethanol-based extraction method is suitable to produce PAC-rich functional ingredients from grape by-products to be used in supplemented food and nutraceuticals.
Collapse
|
13
|
Bio-Mechanism of Catechin as Pheromone Signal Inhibitor: Prediction of Antibacterial Agent Action Mode by In Vitro and In Silico Study. Molecules 2021; 26:molecules26216381. [PMID: 34770790 PMCID: PMC8587927 DOI: 10.3390/molecules26216381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/19/2021] [Indexed: 11/24/2022] Open
Abstract
The utilization of medicinal plants has long been explored for the discovery of antibacterial agents and the most effective mechanisms or new targets that can prevent and control the spread of antibiotic resistance. One kind of bacterial cell wall inhibition is the inactivation of the MurA enzyme that contributes to the formation of peptidoglycan. Another approach is to interfere with the cell–cell communication of bacteria called the Quorum sensing (QS) system. The blocking of auto-inducer such as gelatinase biosynthesis-activating pheromone (GBAP) can also suppress the virulence factors of gelatinase and serine protease. This research, in particular, aims to analyze lead compounds as antibacterial and anti-QS agents from Gambir (Uncaria gambir Roxburgh) through protein inhibition by in silico study. Antibacterial agents were isolated by bioactivity-guided isolation using a combination of chromatographic methods, and their chemical structures were determined by spectroscopic analysis methods. The in vitro antibacterial activity was evaluated by disc diffusion methods to determine inhibitory values. Meanwhile, in the in silico analysis, the compound of Uncaria gambir was used as ligand and compared with fosfomycin, ambuic acid, quercetin, and taxifolin as the standard ligand. These ligands were attached to MurA, GBAP, gelatinase, and serine proteases using Autodock Vina in PyRx 0.8 followed by PYMOL for combining the ligand conformation and proteins. plus programs to explore the complex, and visualized by Discovery Studio 2020 Client program. The antibacterial agent was identified as catechin that showed inhibitory activity against Enterococcus faecalis ATCC 29212 with inhibition zones of 11.70 mm at 10%, together with MIC and MBC values of 0.63 and 1.25 μg/mL, respectively. In the in silico study, the molecular interaction of catechin with MurA, GBAP, and gelatinase proteins showed good binding energy compared with two positive controls, namely fosfomycin and ambuic acid. It is better to use catechin–MurA (−8.5 Kcal/mol) and catechin–gelatinase (−7.8 Kcal/mol), as they have binding energies which are not marginally different from quercetin and taxifolin. On the other hand, the binding energy of serine protease is lower than quercetin, taxifolin, and ambuic acid. Based on the data, catechin has potency as an antibacterial through the inhibition of GBAP proteins, gelatinase, and serine protease that play a role in the QS system. This is the first discovery of the potential of catechin as an alternative antibacterial agent with an effective mechanism to prevent and control oral disease affected by antibiotic resistance.
Collapse
|
14
|
Zhang P, Li Y, Wang T, Cai Z, Cao H, Zhang H, Cao Y, Chen B, Yang D. Statistics on the bioactive anthocyanin/proanthocyanin products in China online sales. Food Sci Nutr 2021; 9:5428-5434. [PMID: 34646513 PMCID: PMC8498052 DOI: 10.1002/fsn3.2500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/03/2021] [Accepted: 07/17/2021] [Indexed: 01/01/2023] Open
Abstract
Due to their potential beneficial effects, anthocyanins and proanthocyanins have attracted great concern worldwide. Recently, anthocyanin/proanthocyanin-related health products have occupied a certain proportion of the market. However, there has not been a systematical assessment on collecting and analyzing the relevant information. In this study, information of anthocyanin/proanthocyanin-related health products on sale on the four major online shopping platforms in China has been collected from November 2020 to February 2021. A total of 144 valid samples from 91 brands were collected, among which blueberries and grape seeds are the main sources of anthocyanins and proanthocyanins, respectively. Besides, the average anthocyanins/proanthocyanins content in these products is 22.71%. Improving eyesight, anti-asthenopia and anti-oxidation are widely mentioned among the anthocyanin-related products, while more proanthocyanin-related products declare for anti-oxidation, whitening & spot lighting, and delay of skin aging & repairing skin damage effects. Among the products, 77.78% are capsules and tablets, and the average unit price of anthocyanins/proanthocyanins is $ 5.26/g. Data analysis shows that searching for high-quality raw materials, researching on the varieties and content of anthocyanins/proanthocyanins, focusing on the intake of specific population, and exploring better storage forms of anthocyanins/proanthocyanins may be important field in the future to promote the development of the anthocyanin/proanthocyanin-related health products.
Collapse
Affiliation(s)
- PeiAo Zhang
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Yi Li
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Xinghua Industrial Research Centre for Food Science and Human HealthChina Agricultural UniversityXinghuaChina
| | - Tianyi Wang
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Zixuan Cai
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Xinghua Industrial Research Centre for Food Science and Human HealthChina Agricultural UniversityXinghuaChina
| | - Haiyan Cao
- Wenir Nutrition High‐Tech Co., LtdYongfengChina
| | | | - Yubin Cao
- Jiangsu QingGu Foods Co., LtdXingdong Economic Development ZoneXinghuaChina
| | - Bo Chen
- Wenir Nutrition High‐Tech Co., LtdYongfengChina
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant ResourcesCollege of Food Science & Nutritional EngineeringChina Agricultural UniversityBeijingChina
- Xinghua Industrial Research Centre for Food Science and Human HealthChina Agricultural UniversityXinghuaChina
| |
Collapse
|
15
|
An Q, Gong X, Le L, Zhu D, Xiang D, Geng F, Zhu H, Peng L, Zou L, Zhao G, Wan Y. Prospects for Proanthocyanidins from Grape Seed: Extraction Technologies and Diverse Bioactivity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Qi An
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Chinese Academy Of Agricultural Sciences, Beijing, Peoples R, China
| | - Xuxiao Gong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Liqing Le
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Dazhou Zhu
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Chinese Academy Of Agricultural Sciences, Beijing, Peoples R, China
| | - Dabing Xiang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Fang Geng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Hong Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Chinese Academy Of Agricultural Sciences, Beijing, Peoples R, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Gang Zhao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| | - Yan Wan
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, Peoples R, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, Peoples R, China
| |
Collapse
|
16
|
Szczurek A. Perspectives on Tannins. Biomolecules 2021; 11:biom11030442. [PMID: 33809775 PMCID: PMC8002309 DOI: 10.3390/biom11030442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Affiliation(s)
- Andrzej Szczurek
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02097 Warsaw, Poland
| |
Collapse
|
17
|
Lee KH, Jang YW, Kim H, Ki JS, Yoo HY. Optimization of Lutein Recovery from Tetraselmis suecica by Response Surface Methodology. Biomolecules 2021; 11:182. [PMID: 33525716 PMCID: PMC7911107 DOI: 10.3390/biom11020182] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Microalgae have been attracting attention as feedstock for biorefinery because they have various advantages, such as carbon fixation, high growth rate and high energy yield. The bioactive compounds and lutein contained in microalgae are known to be beneficial for human health, especially eye and brain health. In this study, in order to improve the recovery of bioactive extracts including lutein from Tetraselmis suecica with higher efficiency, an effective solvent was selected, and the extraction parameters such as temperature, time and solid loading were optimized by response surface methodology. The most effective solvent for lutein recovery was identified as 100% methanol, and the optimum condition was determined (42.4 °C, 4.0 h and 125 g/L biomass loading) by calculation of the multiple regression model. The maximum content of recovered lutein was found to be 2.79 mg/mL, and the ABTS radical scavenging activity (IC50) and ferric reducing antioxidant power (FRAP) value were about 3.36 mg/mL and 561.9 μmol/L, respectively. Finally, the maximum lutein recovery from T. suecica through statistical optimization was estimated to be 22.3 mg/g biomass, which was 3.1-fold improved compared to the control group.
Collapse
Affiliation(s)
| | | | | | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (Y.W.J.); (H.K.)
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, 20, Hongjimun, 2-Gil, Jongno-Gu, Seoul 03016, Korea; (K.H.L.); (Y.W.J.); (H.K.)
| |
Collapse
|