1
|
Liu H, Yan W, Luo D, Li J, Yan D. A real‑world pharmacovigilance study of raloxifene based on the FDA adverse event reporting system (FAERS). Expert Opin Drug Saf 2024:1-9. [PMID: 39690869 DOI: 10.1080/14740338.2024.2443960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Raloxifene was approved for the treatment of postmenopausal osteoporosis; however, its safety profile remains inadequately understood. This study aimed to evaluate the safety signals associated with raloxifene. RESEARCH DESIGN AND METHODS Adverse events (AEs) related to raloxifene, spanning from the first quarter of 2004 to the fourth quarter of 2023, were extracted from the FDA Adverse Event Reporting System (FAERS) database. A disproportionality analysis was conducted using several methods, including the reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Empirical Bayes Geometric Mean (EBGM). RESULTS The analysis yielded 7 229 reports related to raloxifene across 19 277 AEs. A total of 217 significantly disproportionate signals were identified, including muscle spasms and hot flashes. Notably, the study also uncovered novel AEs, including eye conditions like cataracts and macular degeneration, as well as gynecological issues like uterine polyps and hemorrhage. Additionally, the analysis confirmed that pulmonary embolism and deep vein thrombosis were the two most prevalent thromboembolic AEs. CONCLUSION Our study reaffirmed some existing safety information regarding raloxifene while also unveiling novel risk signals. The findings provided crucial insights to enhance the rational use of the drug and inform safety regulatory strategies.
Collapse
Affiliation(s)
- Hao Liu
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wei Yan
- Department of Orthopedic Joints, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Luo
- Department of Orthopedic Joints, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jinsong Li
- Department of Orthopedic Joints, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Dezhi Yan
- The First Clinical Medical School, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
2
|
Ali RAH, Altimimi M, Hadi NR. The potential renoprotective effect of Raloxifene in renal ischemia-reperfusion injury in a male rat model. J Med Life 2023; 16:1274-1281. [PMID: 38024816 PMCID: PMC10652674 DOI: 10.25122/jml-2023-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 12/01/2023] Open
Abstract
Renal ischemia-reperfusion injury is caused by a temporary reduction in oxygen-carrying blood flow to the kidney, followed by reperfusion. During ischemia, kidney tissue damage induces overproduction of reactive oxygen species, which produces oxidative stress. The blood flow restoration during the reperfusion period causes further production of reactive oxygen species that ends with apoptosis and cell death. This study aimed to investigate the potential renoprotective effects of Raloxifene on bilateral renal ischemia-reperfusion injury in rats by looking into kidney function biomarkers, urea and creatinine, inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β). Additionally, antioxidant markers such as total antioxidant capacity (TAC) and the pro-apoptotic marker caspase-3 were assessed. Histopathological scores were also employed for evaluation. Our experimental design involved 20 rats divided into four groups: the sham group underwent median laparotomy without ischemia induction, the control group experienced bilateral renal ischemia for 30 minutes followed by 2 hours of reperfusion, the vehicle group received pretreatment with a mixture of corn oil and dimethyl sulfoxide (DMSO) before ischemia induction, and the Raloxifene-treated group was administered Raloxifene at a dose of 10 mg/kg before ischemia induction, followed by ischemia-reperfusion. Urea and creatinine, TNF-α, IL-1β, and caspase-3 in the Raloxifene group were significantly lower compared to the control and vehicle groups. On the other hand, TAC levels in the Raloxifene group were significantly higher than in the control and vehicle groups. This study concluded that Raloxifene had a renoprotective impact via multiple actions as an anti-inflammatory, anti-apoptotic, and antioxidant agent.
Collapse
Affiliation(s)
- Raghad Abdul Hameed Ali
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Murooj Altimimi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| | - Najah Rayish Hadi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of Kufa, Kufa, Iraq
| |
Collapse
|
3
|
Resveratrol as a Promising Polyphenol in Age-Associated Cardiac Alterations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7911222. [PMID: 35761875 PMCID: PMC9233576 DOI: 10.1155/2022/7911222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/10/2022] [Indexed: 11/18/2022]
Abstract
According to a widely accepted theory, oxidative stress is considered to be the number one trigger of aging-associated degenerative processes including cardiovascular diseases. In the context of aging-research, resveratrol receives special attention with its surprising number of health benefits. The aim of our study was to examine the anti-inflammatory and antioxidant effects of this dietary polyphenol in aging rat heart. 20-month-old female and male Wistar rats were divided into control (untreated) and resveratrol-treated groups. Resveratrol was administered at a dose of 0.05 mg/ml for 12 weeks dissolved in drinking water, while the control rats received ad libitum water. Cardiac level of reactive oxygen species (ROS), nuclear factor kappa B (NFκB), tumor necrosis factor alpha (TNF-α), and glutathione (GSH) parameters, as well as the activity of myeloperoxidase (MPO) and heme oxygenase (HO) enzymes were detected. Together with the biochemical measurements, hearts were isolated and used for an exposure of ischemic-reperfusion injury via Langendorff perfusion system. 12 week of resveratrol treatment suppressed the age-related inflammatory pathways including the expression of TNF-α, NFκB, and the activity of MPO while intensified the endogenous antioxidant defenses through the induction of GSH and HO system. Presumably, as a result of these processes, the necrotic area of the heart in response to an acute injury was also significantly reduced in the resveratrol-treated groups. Our findings confirmed that resveratrol has cardioprotective effects at several points by counteracting the aging-associated cellular malfunctions in the heart.
Collapse
|
4
|
Szabó R, Hoffmann A, Börzsei D, Kupai K, Veszelka M, Berkó AM, Pávó I, Gesztelyi R, Juhász B, Turcsán Z, Pósa A, Varga C. Hormone Replacement Therapy and Aging: A Potential Therapeutic Approach for Age-Related Oxidative Stress and Cardiac Remodeling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8364297. [PMID: 33623635 PMCID: PMC7875635 DOI: 10.1155/2021/8364297] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/23/2020] [Accepted: 01/10/2021] [Indexed: 12/13/2022]
Abstract
Advanced age is an independent risk factor for cardiovascular diseases, which might be further exacerbated by estrogen deficiency. Hormone replacement therapy (HRT) decreases cardiovascular risks and events in postmenopausal women; however, its effects are not fully elucidated in older individuals. Thus, the aim of our study is to examine the impact of HRT on oxidant/antioxidant homeostasis and cardiac remodeling. In our experiment, control (fertile) and aging (~20-month-old) female Wistar rats were used. Aging rats were further divided into estrogen- (E2, 0.1 mg/kg/day per os) or raloxifene- (RAL, 1.0 mg/kg/day per os) treated subgroups. After 2 weeks of treatment, cardiac heme oxygenase (HO) activity, total glutathione (GSH) content, matrix metalloproteinase-2 (MMP-2) activity, and the concentrations of collagen type I and tissue inhibitor of metalloproteinase (TIMP-2), as well as the infarct size, were determined. The aging process significantly decreased the antioxidant HO activity and GSH content, altered the MMP-2/TIMP-2 signaling, and resulted in an excessive collagen accumulation, which culminated in cardiovascular injury. However, 2 weeks of either E2 or RAL treatment enhanced the antioxidant defense mechanisms and attenuated cardiac remodeling related to aging. Our findings clearly show that 2-week-long HRT is a potential intervention to bias successful cardiovascular aging via reducing oxidative damage and cardiovascular dysfunction.
Collapse
Affiliation(s)
- Renáta Szabó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
- Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Alexandra Hoffmann
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Denise Börzsei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Krisztina Kupai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
- 1st Department of Medicine, University of Szeged, Szeged H-6720, Hungary
| | - Médea Veszelka
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Anikó Magyariné Berkó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Imre Pávó
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Rudolf Gesztelyi
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen H-4032, Hungary
| | - Béla Juhász
- Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen H-4032, Hungary
| | - Zsolt Turcsán
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Anikó Pósa
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
- Interdisciplinary Excellence Centre, Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | - Csaba Varga
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|