1
|
Peng Y, Liang Z, Qing X, Wen M, Yuan Z, Chen Q, Du X, Gu R, Wang J, Li L. Transcriptome Analysis Revealed ZmPTOX1 Is Required for Seedling Development and Stress Tolerance in Maize. PLANTS (BASEL, SWITZERLAND) 2024; 13:2346. [PMID: 39273830 PMCID: PMC11397459 DOI: 10.3390/plants13172346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024]
Abstract
Plant seedling morphogenesis is considerably related to photosynthesis, pigment synthesis, and circadian periodicity during seedling development. We identified and cloned a maize zebra or crossbanding leaves mutant wk3735, which produces pale white kernels and was identified and plays a role in the equilibrium of the Redox state the in/out of ETC by active oxygen scavenging. Interestingly, it produces the zebra leaves during the production of the first seven leaves, which is apparently different from the mutation of homologs AtPTOX in Arabidopsis. It is intriguing to investigate how and why yellow crossbands (zebra leaf phenotype) emerge on leaves. As expected, chlorophyll concentration and photosynthetic efficiency both significantly declined in the yellow sector of wk3735 leaves. Meanwhile, we observed the circadian expression pattern of ZmPTOX1, which was further validated by protein interaction assays of the circadian clock protein TIM1 and ZmPTOX1. The transcriptome data of yellow (muW) and green (muG) sectors of knock-out lines and normal leaves of overexpression lines (OE) at the 5th-leaf seedling stage were analyzed. Zebra leaf etiolated sections exhibit a marked defect in the expression of genes involved in the circadian rhythm and rhythmic stress (light and cold stress) responses than green sections. According to the analysis of co-DEGs of muW vs. OE and muG vs. OE, terms linked to cell repair function were upregulated while those linked to environmental adaptability and stress response were downregulated due to the mutation of ZmPTOX1. Further gene expression level analyses of reactive oxygen species (ROS) scavenging enzymes and detection of ROS deposition indicated that ZmPTOX1 played an essential role in plant stress resistance and ROS homeostasis. The pleiotropic roles of ZmPTOX1 in plant ROS homeostasis maintenance, stress response, and circadian rhythm character may collectively explain the phenotype of zebra leaves during wk3735 seedling development.
Collapse
Affiliation(s)
- Yixuan Peng
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Key Laboratory of Cultivation and Utilization of Oil Tea Resources of Jiangxi Province, Jiangxi Academy Forestry, Nanchang 330013, China
| | - Zhi Liang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xindong Qing
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Motong Wen
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Zhipeng Yuan
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Quanquan Chen
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xuemei Du
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Riliang Gu
- Sanya Institute, China Agricultural University, Sanya 572025, China
| | - Jianhua Wang
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Li Li
- Sanya Institute, China Agricultural University, Sanya 572025, China
- State Key Laboratory of Maize Bio-Breeding, Key Laboratory of Crop Heterosis Utilization, Ministry of Education, Beijing Innovation Center for Crop Seed Technology (MOA), College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Li J, Wen J, Wu K, Li L, Fang L, Zeng S. Integrating Physiology, Cytology, and Transcriptome to Reveal the Leaf Variegation Mechanism in Phalaenopsis Chia E Yenlin Variegata Leaves. Biomolecules 2024; 14:963. [PMID: 39199351 PMCID: PMC11352648 DOI: 10.3390/biom14080963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Phalaenopsis orchids, with their unique appearance and extended flowering period, are among the most commercially valuable Orchidaceae worldwide. Particularly, the variegation in leaf color of Phalaenopsis significantly enhances the ornamental and economic value and knowledge of the molecular mechanism of leaf-color variegation in Phalaenopsis is lacking. In this study, an integrative analysis of the physiology, cytology, and transcriptome profiles was performed on Phalaenopsis Chia E Yenlin Variegata leaves between the green region (GR) and yellow region (YR) within the same leaf. The total chlorophyll and carotenoid contents in the YR exhibited a marked decrease of 72.18% and 90.21%, respectively, relative to the GR. Examination of the ultrastructure showed that the chloroplasts of the YR were fewer and smaller and exhibited indistinct stromal lamellae, ruptured thylakoids, and irregularly arranged plastoglobuli. The transcriptome sequencing between the GR and YR led to a total of 3793 differentially expressed genes, consisting of 1769 upregulated genes and 2024 downregulated genes. Among these, the chlorophyll-biosynthesis-related genes HEMA, CHLH, CRD, and CAO showed downregulation, while the chlorophyll-degradation-related gene SGR had an upregulated expression in the YR. Plant-hormone-related genes and transcription factors MYBs (37), NACs (21), ERFs (20), bHLH (13), and GLK (2), with a significant difference, were also analyzed. Furthermore, qRT-PCR experiments validated the above results. The present work establishes a genetic foundation for future studies of leaf-pigment mutations and may help to improve the economic and breeding values of Phalaenopsis.
Collapse
Affiliation(s)
- Ji Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wen
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Kunlin Wu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Lin Li
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Lin Fang
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
| | - Songjun Zeng
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Gene Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.L.); (J.W.); (K.W.); (L.L.)
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
3
|
Zou Y, Huang Y, Zhang D, Chen H, Liang Y, Hao M, Yin Y. Molecular Mechanisms of Chlorophyll Deficiency in Ilex × attenuata 'Sunny Foster' Mutant. PLANTS (BASEL, SWITZERLAND) 2024; 13:1284. [PMID: 38794356 PMCID: PMC11124982 DOI: 10.3390/plants13101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024]
Abstract
Ilex × attenuata 'Sunny Foster' represents a yellow leaf mutant originating from I. × attenuata 'Foster#2', a popular ornamental woody cultivar. However, the molecular mechanisms underlying this leaf color mutation remain unclear. Using a comprehensive approach encompassing cytological, physiological, and transcriptomic methodologies, notable distinctions were discerned between the mutant specimen and its wild type. The mutant phenotype displayed aberrant chloroplast morphology, diminished chlorophyll content, heightened carotenoid/chlorophyll ratios, and a decelerated rate of plant development. Transcriptome analysis identified differentially expressed genes (DEGs) related to chlorophyll metabolism, carotenoid biosynthesis and photosynthesis. The up-regulation of CHLD and CHLI subunits leads to decreased magnesium chelatase activity, while the up-regulation of COX10 increases heme biosynthesis-both impair chlorophyll synthesis. Conversely, the down-regulation of HEMD hindered chlorophyll synthesis, and the up-regulation of SGR enhanced chlorophyll degradation, resulting in reduced chlorophyll content. Additionally, genes linked to carotenoid biosynthesis, flavonoid metabolism, and photosynthesis were significantly down-regulated. We also identified 311 putative differentially expressed transcription factors, including bHLHs and GLKs. These findings shed light on the molecular mechanisms underlying leaf color mutation in I. × attenuata 'Sunny Foster' and provide a substantial gene reservoir for enhancing leaf color through breeding techniques.
Collapse
Affiliation(s)
- Yiping Zou
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing 211225, China
| | - Yajian Huang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
| | - Donglin Zhang
- Department of Horticulture, University of Georgia, Athens, GA 30602, USA
| | - Hong Chen
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| | - Youwang Liang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
| | - Mingzhuo Hao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Jiangsu Qinghao Landscape Horticulture Co., Ltd., Nanjing 211225, China
| | - Yunlong Yin
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China; (Y.Z.)
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing 210014, China
| |
Collapse
|
4
|
Tan X, Chen J, Zhang J, Guo G, Zhang H, Zhao X, Lv S, Xu H, Hou D. Gene Expression and Interaction Analysis of FsWRKY4 and FsMAPK3 in Forsythia suspensa. PLANTS (BASEL, SWITZERLAND) 2023; 12:3415. [PMID: 37836156 PMCID: PMC10574466 DOI: 10.3390/plants12193415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Forsythia suspensa is a deciduous shrub that belongs to the family Myrtaceae, and its dried fruits are used as medicine. F. suspensa contains several secondary metabolites, which exert pharmacological effects. One of the main active components is forsythin, which exhibits free radical scavenging, antioxidant, anti-inflammatory, and anti-cancer effects. Mitogen-activated protein kinase (MAPKs) can increase the activity of WRKY family transcription factors in a phosphorylated manner, thereby increasing the content of secondary metabolites. However, the mechanism of interaction between MAPKs and WRKYs in F. suspensa remains unclear. In this study, we cloned the genes of FsWRKY4 and FsMAPK3, and performed a bioinformatics analysis. The expression patterns of FsWRKY4 and FsMAPK3 were analyzed in the different developmental stages of leaf and fruit from F. suspensa using real-time fluorescence quantitative PCR (qRT-PCR). Subcellular localization analysis of FsWRKY4 and FsMAPK3 proteins was performed using a laser scanning confocal microscope. The existence of interactions between FsWRKY4 and FsMPAK3 in vitro was verified by yeast two-hybridization. Results showed that the cDNA of FsWRKY4 (GenBank number: OR566682) and FsMAPK3 (GenBank number: OR566683) were 1587 and 522 bp, respectively. The expression of FsWRKY4 was higher in the leaves than in fruits, and the expression of FsMAPK3 was higher in fruits but lower in leaves. The subcellular localization results indicated that FsWRKY4 was localized in the nucleus and FsMAPK3 in the cytoplasm and nucleus. The prey vector pGADT7-FsWRKY4 and bait vector pGBKT7-FsMAPK3 were constructed and co-transferred into Y2H Glod yeast receptor cells. The results indicated that FsWRKY4 and FsMAPK3 proteins interact with each other in vitro. The preliminary study may provide a basis for more precise elucidation of the synthesis of secondary metabolites in F. suspensa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471032, China
| |
Collapse
|
5
|
Ding H, Yang Z, Zai Z, Feng K, Wang L, Yue Y, Yang X. Genome-Wide Analysis of ZAT Gene Family in Osmanthus fragrans and the Function Exploration of OfZAT35 in Cold Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2346. [PMID: 37375971 PMCID: PMC10305554 DOI: 10.3390/plants12122346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Osmanthus fragrans is a popular ornamental and odorant plant with high commercial value, but its cultivation and exploitation are limited by low temperature. The ZAT (zinc finger of Arabidopsis thaliana) genes as a subclass of the C2H2-type zinc finger proteins (C2H2-ZFP) family play essential roles in various abiotic stresses. However, their roles in cold stress response in O. fragrans remain unclear. This study identified 38 OfZATs, which could be divided into 5 subgroups based on the phylogenetic tree, with OfZATs in the same subgroup harboring similar gene structures and motif patterns. In addition, 49 segmental and 5 tandem duplication events were detected among OfZAT genes, while some OfZAT genes exhibited specific expression patterns in different tissues. Furthermore, two OfZATs were induced in salt stress and eight OfZATs responded to cold stress. Interestingly, OfZAT35 showed a continuously increasing expression trend under cold stress, while its protein showed nucleus localization with no transcriptional activation activity. Transiently transformed tobacco overexpressing OfZAT35 exhibited a significantly higher relative electrolyte leakage (REL) level and increased activities of superoxide dismutase (SOD), peroxidase (POD), and Ascorbate peroxidase (APX), while there was significantly decreased activity of catalase (CAT). Moreover, CAT, DREB3, and LEA5, which are associated with cold stress, were dramatically decreased after cold treatment in transiently transformed tobacco, suggesting that overexpression of OfZAT35 negatively regulated cold stress. This study provides a basis for exploring the roles of ZAT genes and contributes to uncovering the mechanism of ZAT-mediated cold stress response in O. fragrans.
Collapse
Affiliation(s)
- Huifen Ding
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhandong Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhouying Zai
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Keyi Feng
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Lianggui Wang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuanzheng Yue
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Xiulian Yang
- Key Laboratory of Landscape Architecture, Jiangsu Province, College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Yang J, Gu T, Lu Y, Xu Y, Gan RY, Ng SB, Sun Q, Peng Y. Edible Osmanthus fragrans flowers: aroma and functional components, beneficial functions, and applications. Crit Rev Food Sci Nutr 2023; 64:10055-10068. [PMID: 37287270 DOI: 10.1080/10408398.2023.2220130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Osmanthus fragrans (O. fragrans) has been cultivated in China for over 2,500 years as a traditional fragrant plant. Recently, O. fragrans has drawn increasing attention due to its unique aroma and potential health benefits. In this review, the aroma and functional components of O. fragrans are summarized, and their biosynthetic mechanism is discussed. The beneficial functions and related molecular mechanism of O. fragrans extract are then highlighted. Finally, potential applications of O. fragrans are summarized, and future perspectives are proposed and discussed. According to the current research, O. fragrans extracts and components have great potential to be developed into value-added functional ingredients with preventive effects on certain chronic diseases. However, it is crucial to develop efficient, large-scale, and commercially viable extraction methods to obtain the bioactive components from O. fragrans. Furthermore, more clinical studies are highly needed to explore the beneficial functions of O. fragrans and guide its development into functional food products.
Collapse
Affiliation(s)
- Jiani Yang
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ting Gu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yongtong Lu
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| | | | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Siew Bee Ng
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Quancai Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Taipa, Macao SAR, China
| |
Collapse
|
7
|
Han H, Zhou Y, Liu H, Chen X, Wang Q, Zhuang H, Sun X, Ling Q, Zhang H, Wang B, Wang J, Tang Y, Wang H, Liu H. Transcriptomics and Metabolomics Analysis Provides Insight into Leaf Color and Photosynthesis Variation of the Yellow-Green Leaf Mutant of Hami Melon ( Cucumis melo L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1623. [PMID: 37111847 PMCID: PMC10143263 DOI: 10.3390/plants12081623] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 06/16/2023]
Abstract
Leaf color mutants are ideal materials for studying the regulatory mechanism of chloroplast development and photosynthesis. We isolated a cucumis melo spontaneous mutant (MT), which showed yellow-green leaf phenotype in the whole growing period and could be inherited stably. We compared its leaves with the wild type (WT) in terms of cytology, physiology, transcriptome and metabolism. The results showed that the thylakoid grana lamellae of MT were loosely arranged and fewer in number than WT. Physiological experiments also showed that MT had less chlorophyll content and more accumulation of reactive oxygen species (ROS) than WT. Furthermore, the activity of several key enzymes in C4 photosynthetic carbon assimilation pathway was more enhanced in MT than WT. Transcriptomic and metabolomic analyses showed that differential expression genes and differentially accumulated metabolites in MT were mainly co-enriched in the pathways related to photosystem-antenna proteins, central carbon metabolism, glutathione metabolism, phenylpropanoid biosynthesis and flavonoid metabolism. We also analyzed several key proteins in photosynthesis and chloroplast transport by Western blot. In summary, the results may provide a new insight into the understanding of how plants respond to the impaired photosynthesis by regulating chloroplast development and photosynthetic carbon assimilation pathways.
Collapse
Affiliation(s)
- Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yuan Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huifang Liu
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qiang Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hongmei Zhuang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Xiaoxia Sun
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| | - Qihua Ling
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200030, China
| | - Huijun Zhang
- School of Life Science, Huaibei Normal University, Huaibei 235000, China
| | - Baike Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Juan Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Yaping Tang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Hao Wang
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830002, China
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Construction Corps, Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China; (H.H.)
| |
Collapse
|
8
|
Duan C, Tian FH, Yao L, Lv JH, Jia CW, Li CT. Comparative transcriptome and WGCNA reveal key genes involved in lignocellulose degradation in Sarcomyxa edulis. Sci Rep 2022; 12:18379. [PMID: 36319671 PMCID: PMC9626453 DOI: 10.1038/s41598-022-23172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 12/02/2022] Open
Abstract
The developmental transcriptomes of Sarcomyxa edulis were assessed to explore the molecular mechanisms underlying lignocellulose degradation. Six stages were analyzed, spanning the entire developmental process: growth of mycelium until occupying half the bag (B1), mycelium under low-temperature stimulation after occupying the entire bag (B2), appearance of mycelium in primordia (B3), primordia (B4), mycelium at the harvest stage (B5), and mature fruiting body (B6). Samples from all six developmental stages were used for transcriptome sequencing, with three biological replicates for all experiments. A co-expression network of weighted genes associated with extracellular enzyme physiological traits was constructed using weighted gene co-expression network analysis (WGCNA). We obtained 19 gene co-expression modules significantly associated with lignocellulose degradation. In addition, 12 key genes and 8 kinds of TF families involved in lignocellulose degradation pathways were discovered from the four modules that exhibited the highest correlation with the target traits. These results provide new insights that advance our understanding of the molecular genetic mechanisms of lignocellulose degradation in S. edulis to facilitate its utilization by the edible mushroom industry.
Collapse
Affiliation(s)
- Chao Duan
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China ,grid.412545.30000 0004 1798 1300Institute of Cotton Research, Shanxi Agricultural University, Yuncheng, 044000 Shanxi Province China
| | - Feng-hua Tian
- grid.443382.a0000 0004 1804 268XDepartment of Plant Pathology, College of Agriculture, Guizhou University, Guiyang, China ,grid.443382.a0000 0004 1804 268XInstitute of Edible Fungi, Guizhou University, Guiyang, China
| | - Lan Yao
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Jian-Hua Lv
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chuan-Wen Jia
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| | - Chang-Tian Li
- grid.464353.30000 0000 9888 756XEngineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, 130118 Jilin Province China
| |
Collapse
|
9
|
New Insights into the Roles of Osmanthus Fragrans Heat-Shock Transcription Factors in Cold and Other Stress Responses. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Sweet osmanthus (Osmanthus fragrans) is an evergreen woody plant that emits a floral aroma and is widely used in the landscape and fragrance industries. However, its application and cultivation regions are limited by cold stress. Heat-shock transcription factor (HSF) family members are widely present in plants and participate in, and regulate, the defense processes of plants under various abiotic stress conditions, but now, the role of this family in the responses of O. fragrans to cold stress is still not clear. Here, 46 OfHSF members were identified in the O. fragrans genome and divided into three subfamilies on the basis of a phylogenetic analysis. The promoter regions of most OfHSFs contained many cis-acting elements involved in multiple hormonal and abiotic stresses. RNA-seq data revealed that most of OfHSF genes were differentially expressed in various tissues, and some OfHSF members were induced by cold stress. The qRT-PCR analysis identified four OfHSFs that were induced by both cold and heat stresses, in which OfHSF11 and OfHSF43 had contrary expression trends under cold stress conditions and their expression patterns both showed recovery tendencies after the cold stress. OfHSF11 and OfHSF43 localized to the nuclei and their expression patterns were also induced under multiple abiotic stresses and hormonal treatments, indicating that they play critical roles in responses to multiple stresses. Furthermore, after a cold treatment, transient expression revealed that the malondialdehyde (MDA) content of OfHSF11-transformed tobacco significantly increased, and the expression levels of cold-response regulatory gene NbDREB3, cold response gene NbLEA5 and ROS detoxification gene NbCAT were significantly inhibited, implying that OfHSF11 is a negative regulator of cold responses in O. fragrans. Our study contributes to the further functional characterization of OfHSFs and will be useful in developing improved cold-tolerant cultivars of O. fragrans.
Collapse
|