1
|
Baes R, Grünberger F, Pyr dit Ruys S, Couturier M, De Keulenaer S, Skevin S, Van Nieuwerburgh F, Vertommen D, Grohmann D, Ferreira-Cerca S, Peeters E. Transcriptional and translational dynamics underlying heat shock response in the thermophilic crenarchaeon Sulfolobus acidocaldarius. mBio 2023; 14:e0359322. [PMID: 37642423 PMCID: PMC10653856 DOI: 10.1128/mbio.03593-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 06/29/2023] [Indexed: 08/31/2023] Open
Abstract
IMPORTANCE Heat shock response is the ability to respond adequately to sudden temperature increases that could be harmful for cellular survival and fitness. It is crucial for microorganisms living in volcanic hot springs that are characterized by high temperatures and large temperature fluctuations. In this study, we investigated how S. acidocaldarius, which grows optimally at 75°C, responds to heat shock by altering its gene expression and protein production processes. We shed light on which cellular processes are affected by heat shock and propose a hypothesis on underlying regulatory mechanisms. This work is not only relevant for the organism's lifestyle, but also with regard to its evolutionary status. Indeed, S. acidocaldarius belongs to the archaea, an ancient group of microbes that is more closely related to eukaryotes than to bacteria. Our study thus also contributes to a better understanding of the early evolution of heat shock response.
Collapse
Affiliation(s)
- Rani Baes
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Felix Grünberger
- Institute of Microbiology and Archaea Centre, Universität Regensburg, Regensburg, Germany
| | | | - Mohea Couturier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sarah De Keulenaer
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Sonja Skevin
- NXTGNT, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | | | - Didier Vertommen
- Institut de Duve, Université Catholique de Louvain, Brussels, Belgium
| | - Dina Grohmann
- Institute of Microbiology and Archaea Centre, Universität Regensburg, Regensburg, Germany
| | - Sébastien Ferreira-Cerca
- Cellular Biochemistry of Microorganisms, Biochemie III, Universität Regensburg, Regensburg, Germany
- Laboratoire de Biologie Structurale de la Cellule (BIOC), UMR 7654 -CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
2
|
Goettig P, Koch NG, Budisa N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. Int J Mol Sci 2023; 24:14035. [PMID: 37762340 PMCID: PMC10531186 DOI: 10.3390/ijms241814035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
All known organisms encode 20 canonical amino acids by base triplets in the genetic code. The cellular translational machinery produces proteins consisting mainly of these amino acids. Several hundred natural amino acids serve important functions in metabolism, as scaffold molecules, and in signal transduction. New side chains are generated mainly by post-translational modifications, while others have altered backbones, such as the β- or γ-amino acids, or they undergo stereochemical inversion, e.g., in the case of D-amino acids. In addition, the number of non-canonical amino acids has further increased by chemical syntheses. Since many of these non-canonical amino acids confer resistance to proteolytic degradation, they are potential protease inhibitors and tools for specificity profiling studies in substrate optimization and enzyme inhibition. Other applications include in vitro and in vivo studies of enzyme kinetics, molecular interactions and bioimaging, to name a few. Amino acids with bio-orthogonal labels are particularly attractive, enabling various cross-link and click reactions for structure-functional studies. Here, we cover the latest developments in protease research with non-canonical amino acids, which opens up a great potential, e.g., for novel prodrugs activated by proteases or for other pharmaceutical compounds, some of which have already reached the clinical trial stage.
Collapse
Affiliation(s)
- Peter Goettig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Nikolaj G. Koch
- Biocatalysis Group, Technische Universität Berlin, 10623 Berlin, Germany;
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
| | - Nediljko Budisa
- Bioanalytics Group, Institute of Biotechnology, Technische Universität Berlin, 10623 Berlin, Germany;
- Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
3
|
Ding N, Chen Y, Chu Y, Zhong C, Huang L, Zhang Z. Lysine Methylation Modulates the Interaction of Archaeal Chromatin Protein Cren7 With DNA. Front Microbiol 2022; 13:837737. [PMID: 35308404 PMCID: PMC8927968 DOI: 10.3389/fmicb.2022.837737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/28/2022] [Indexed: 12/15/2022] Open
Abstract
Cren7 and Sis7d, two chromatin proteins from Sulfolobus islandicus, undergo extensive methylations at multiple lysine residues to various extents. Whether this highly conserved protein serves an epigenetic role in the regulation of the structure and function of the chromosome remains unclear. In the present study, we show that methylation significantly affects Cren7, but not Sis7d, in the ability to bind DNA and to constrain negative DNA supercoils. Strikingly, methylated Cren7 was significantly less efficient in forming oligomers or mediating intermolecular DNA bridging. Single-site substitution mutation with glutamine reveals that methylation of the four lysine residues (K24, K31, K42, and K48) of Cren7 at the protein-DNA interface, which are variably conserved among Cren7 homologues from different branches of the Crenarchaeota, influenced Cren7-DNA interactions in different manners. We suggest that dynamic methylation of Cren7 may represent a potential epigenetic mechanism involved in the chromosomal regulation in crenarchaea.
Collapse
Affiliation(s)
- Niannian Ding
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanyuan Chen
- The Research Platform for Protein Sciences, Institute of Biophysics, Chinese Academy of Sciences (CAS), Beijing, China
| | - Yindi Chu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Cheng Zhong
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Zhenfeng Zhang,
| | - Zhenfeng Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Li Huang,
| |
Collapse
|
4
|
Abstract
B-family DNA polymerases (PolBs) of different groups are widespread in Archaea, and different PolBs often coexist in the same organism. Many of these PolB enzymes remain to be investigated. One of the main groups that is poorly characterized is PolB2, whose members occur in many archaea but are predicted to be inactivated forms of DNA polymerase. Here, Sulfolobus islandicus DNA polymerase 2 (Dpo2), a PolB2 enzyme, was expressed in its native host and purified. Characterization of the purified enzyme revealed that the polymerase possesses a robust nucleotide incorporation activity but is devoid of the 3'-5' exonuclease activity. Enzyme kinetics analyses showed that Dpo2 replicates undamaged DNA templates with high fidelity, which is consistent with its inefficient nucleotide insertion activity opposite different DNA lesions. Strikingly, the polymerase is highly efficient in extending mismatches and mispaired primer termini once a nucleotide is placed opposite a damaged site. This extender polymerase represents a novel type of prokaryotic PolB specialized for DNA damage repair in Archaea. IMPORTANCE In this work, we report that Sulfolobus islandicus Dpo2, a B-family DNA polymerase once predicted to be an inactive form, is a bona fide DNA polymerase functioning in translesion synthesis. S. islandicus Dpo2 is a member of a large group of B-family DNA polymerases (PolB2) that are present in many archaea and some bacteria, and they carry variations in well-conserved amino acids in the functional domains responsible for polymerization and proofreading. However, we found that this prokaryotic B-family DNA polymerase not only replicates undamaged DNA with high fidelity but also extends mismatch and DNA lesion-containing substrates with high efficiencies. With these data, we propose this enzyme functions as an extender polymerase, the first prokaryotic enzyme of this type. Our data also suggest this PolB2 enzyme represents a functional counterpart of the eukaryotic DNA polymerase Pol zeta, an enzyme that is devoted to DNA damage repair.
Collapse
|
5
|
Piszkin L, Bowman J. Extremophile enzyme optimization for low temperature and high salinity are fundamentally incompatible. Extremophiles 2021; 26:5. [PMID: 34940913 DOI: 10.1007/s00792-021-01254-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/09/2021] [Indexed: 11/25/2022]
Abstract
The evolutionary mechanisms behind cold and high-saline co-adaptation of proteins are not thoroughly understood. To explore how enzymes evolve in response to multiple environmental pressures we developed a novel in silico method to model the directed evolution of proteins, the Protein Evolution Parameter Calculator (PEPC). PEPC carries out single amino acid substitutions that lead to improvements in the selected user-defined parameters. To investigate the evolutionary relationship between increased flexibility and decreased isoelectric point, which are presumed indicators of cold and saline adaptation in proteins, we applied PEPC to a subset of core haloarchaea orthologous group (cHOG) proteins from the mesophilic Halobacterium salinarum NRC-1 and cold-tolerant Halorubrum lacusprofundi strain ATCC 49239. The results suggest that mutations that increase flexibility will also generally increase isoelectric point. These findings suggest that enzyme adaptation to low temperature and high salinity might be evolutionarily counterposed based on the structural characteristics of probable amino acid mutations. This may help to explain the apparent lack of truly psychrophilic halophiles in nature, and why microbes adapted to polar hypersaline environments typically have mesophilic temperature optima. A better understanding of protein evolution to extremely cold and salty conditions will aid in our understanding of where and how life is distributed on Earth and in our solar system.
Collapse
Affiliation(s)
- Luke Piszkin
- Department of Physics, UC San Diego, La Jolla, CA, USA.
| | - Jeff Bowman
- Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Abstract
Since its invention, recombinant protein expression has greatly facilitated our understanding of various cellular processes in different biological systems because theoretically this technique renders any gene to be expressed in a mesophilic host like Escherichia coli, thus allowing functional characterizations of proteins of interest. However, such a practice has only yielded a limited success for proteins encoded in thermophilic archaea since thermophilic proteins are often present in an insoluble form when expressed in E. coli. As a result, it is advantageous to express recombinant proteins of thermophilic archaea in a homologous host, allowing a native form of recombinant protein to be purified and characterized. Here we present a detailed protocol for the homologous expression and purification of proteins in the thermophilic archaeon, Sulfolobus islandicus Rey15A.
Collapse
Affiliation(s)
- Xu Feng
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Qunxin She
- CRISPR and Archaea Biology Research Center, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China.
| |
Collapse
|
7
|
Timmers HTM. SAGA and TFIID: Friends of TBP drifting apart. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194604. [PMID: 32673655 DOI: 10.1016/j.bbagrm.2020.194604] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Transcription initiation constitutes a major checkpoint in gene regulation across all living organisms. Control of chromatin function is tightly linked to this checkpoint, which is best illustrated by the SAGA coactivator. This evolutionary conserved complex of 18-20 subunits was first discovered as a Gcn5p-containing histone acetyltransferase, but it also integrates a histone H2B deubiquitinase. The SAGA subunits are organized in a modular fashion around its central core. Strikingly, this central module of SAGA shares a number of proteins with the central core of the basal transcription factor TFIID. In this review I will compare the SAGA and TFIID complexes with respect to their shared subunits, structural organization, enzymatic activities and chromatin binding. I will place a special emphasis on the ancestry of SAGA and TFIID subunits, which suggests that these complexes evolved to control the activity of TBP (TATA-binding protein) in directing the assembly of transcription initiation complexes.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK) partner site Freiburg, 79106 Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany.
| |
Collapse
|