1
|
Boyle N, Betts S, Lu H. Monoaminergic Modulation of Learning and Cognitive Function in the Prefrontal Cortex. Brain Sci 2024; 14:902. [PMID: 39335398 PMCID: PMC11429557 DOI: 10.3390/brainsci14090902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/09/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Extensive research has shed light on the cellular and functional underpinnings of higher cognition as influenced by the prefrontal cortex. Neurotransmitters act as key regulatory molecules within the PFC to assist with synchronizing cognitive state and arousal levels. The monoamine family of neurotransmitters, including dopamine, serotonin, and norepinephrine, play multifaceted roles in the cognitive processes behind learning and memory. The present review explores the organization and signaling patterns of monoamines within the PFC, as well as elucidates the numerous roles played by monoamines in learning and higher cognitive function.
Collapse
Affiliation(s)
| | | | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA; (N.B.); (S.B.)
| |
Collapse
|
2
|
Sagheddu C, Stojanovic T, Kouhnavardi S, Savchenko A, Hussein AM, Pistis M, Monje FJ, Plasenzotti R, Aufy M, Studenik CR, Lubec J, Lubec G. Cognitive performance in aged rats is associated with differences in distinctive neuronal populations in the ventral tegmental area and altered synaptic plasticity in the hippocampus. Front Aging Neurosci 2024; 16:1357347. [PMID: 38469164 PMCID: PMC10926450 DOI: 10.3389/fnagi.2024.1357347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/12/2024] [Indexed: 03/13/2024] Open
Abstract
Introduction Deterioration of cognitive functions is commonly associated with aging, although there is wide variation in the onset and manifestation. Albeit heterogeneity in age-related cognitive decline has been studied at the cellular and molecular level, there is poor evidence for electrophysiological correlates. The aim of the current study was to address the electrophysiological basis of heterogeneity of cognitive functions in cognitively Inferior and Superior old (19-20 months) rats in the ventral tegmental area (VTA) and the hippocampus, having Young (12 weeks) rats as a control. The midbrain VTA operates as a hub amidst affective and cognitive facets, processing sensory inputs related to motivated behaviours and hippocampal memory. Increasing evidence shows direct dopaminergic and non-dopaminergic input from the VTA to the hippocampus. Methods Aged Superior and Inferior male rats were selected from a cohort of 88 animals based on their performance in a spatial learning and memory task. Using in vivo single-cell recording in the VTA, we examined the electrical activity of different neuronal populations (putative dopaminergic, glutamatergic and GABAergic neurons). In the same animals, basal synaptic transmission and synaptic plasticity were examined in hippocampal slices. Results Electrophysiological recordings from the VTA and hippocampus showed alterations associated with aging per se, together with differences specifically linked to the cognitive status of aged animals. In particular, the bursting activity of dopamine neurons was lower, while the firing frequency of glutamatergic neurons was higher in VTA of Inferior old rats. The response to high-frequency stimulation in hippocampal slices also discriminated between Superior and Inferior aged animals. Discussion This study provides new insight into electrophysiological information underlying compromised cerebral ageing. Further understanding of brain senescence, possibly related to neurocognitive decline, will help develop new strategies towards the preservation of a high quality of life.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Shima Kouhnavardi
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Artem Savchenko
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Ahmed M. Hussein
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Asyut, Egypt
| | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Monserrato, Italy
- Section of Cagliari, Neuroscience Institute National Research Council of Italy (CNR), Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| | - Francisco J. Monje
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, Vienna, Austria
| | - Roberto Plasenzotti
- Division of Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Mohammed Aufy
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Christian R. Studenik
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| |
Collapse
|
3
|
Socha J, Grochecki P, Smaga I, Jastrzębska J, Wronikowska-Denysiuk O, Marszalek-Grabska M, Slowik T, Kotlinski R, Filip M, Lubec G, Kotlinska JH. Social Interaction in Adolescent Rats with Neonatal Ethanol Exposure: Impact of Sex and CE-123, a Selective Dopamine Reuptake Inhibitor. Int J Mol Sci 2024; 25:1041. [PMID: 38256113 PMCID: PMC10816180 DOI: 10.3390/ijms25021041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Children with fetal alcohol spectrum disorders (FASDs) demonstrate deficits in social functioning that contribute to early withdrawal from school and delinquency, as well as the development of anxiety and depression. Dopamine is involved in reward, motivation, and social behavior. Thus, we evaluated whether neonatal ethanol exposure (in an animal model of FASDs) has an impact on social recognition memory using the three-chamber social novelty discrimination test during early and middle adolescence in male and female rats, and whether the modafinil analog, the novel atypical dopamine reuptake inhibitor CE-123, can modify this effect. Our study shows that male and female rats neonatally exposed to ethanol exhibited sex- and age-dependent deficits in social novelty discrimination in early (male) and middle (female) adolescence. These deficits were specific to the social domain and not simply due to more general deficits in learning and memory because these animals did not exhibit changes in short-term recognition memory in the novel object recognition task. Furthermore, early-adolescent male rats that were neonatally exposed to ethanol did not show changes in the anxiety index but demonstrated an increase in locomotor activity. Chronic treatment with CE-123, however, prevented the appearance of these social deficits. In the hippocampus of adolescent rats, CE-123 increased BDNF and decreased its signal transduction TrkB receptor expression level in ethanol-exposed animals during development, suggesting an increase in neuroplasticity. Thus, selective dopamine reuptake inhibitors, such as CE-123, represent interesting drug candidates for the treatment of deficits in social behavior in adolescent individuals with FASDs.
Collapse
Affiliation(s)
- Justyna Socha
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Joanna Jastrzębska
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Olga Wronikowska-Denysiuk
- Independent Laboratory of Behavioral Studies, Chair of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8b, 20-090 Lublin, Poland;
| | - Tymoteusz Slowik
- Experimental Medicine Center, Medical University, Jaczewskiego 8, 20-090 Lublin, Poland;
| | - Robert Kotlinski
- Clinical Department of Cardiac Surgery, University of Rzeszow, 35-601 Rzeszow, Poland;
| | - Małgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland; (I.S.); (J.J.); (M.F.)
| | - Gert Lubec
- Department of Neuroproteomics, Paracelsus Medical University, 5020 Salzburg, Austria;
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland; (J.S.); (P.G.)
| |
Collapse
|
4
|
Bowirrat A, Elman I, Dennen CA, Gondré-Lewis MC, Cadet JL, Khalsa J, Baron D, Soni D, Gold MS, McLaughlin TJ, Bagchi D, Braverman ER, Ceccanti M, Thanos PK, Modestino EJ, Sunder K, Jafari N, Zeine F, Badgaiyan RD, Barh D, Makale M, Murphy KT, Blum K. Neurogenetics and Epigenetics of Loneliness. Psychol Res Behav Manag 2023; 16:4839-4857. [PMID: 38050640 PMCID: PMC10693768 DOI: 10.2147/prbm.s423802] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/14/2023] [Indexed: 12/06/2023] Open
Abstract
Loneliness, an established risk factor for both, mental and physical morbidity, is a mounting public health concern. However, the neurobiological mechanisms underlying loneliness-related morbidity are not yet well defined. Here we examined the role of genes and associated DNA risk polymorphic variants that are implicated in loneliness via genetic and epigenetic mechanisms and may thus point to specific therapeutic targets. Searches were conducted on PubMed, Medline, and EMBASE databases using specific Medical Subject Headings terms such as loneliness and genes, neuro- and epigenetics, addiction, affective disorders, alcohol, anti-reward, anxiety, depression, dopamine, cancer, cardiovascular, cognitive, hypodopaminergia, medical, motivation, (neuro)psychopathology, social isolation, and reward deficiency. The narrative literature review yielded recursive collections of scientific and clinical evidence, which were subsequently condensed and summarized in the following key areas: (1) Genetic Antecedents: Exploration of multiple genes mediating reward, stress, immunity and other important vital functions; (2) Genes and Mental Health: Examination of genes linked to personality traits and mental illnesses providing insights into the intricate network of interaction converging on the experience of loneliness; (3) Epigenetic Effects: Inquiry into instances of loneliness and social isolation that are driven by epigenetic methylations associated with negative childhood experiences; and (4) Neural Correlates: Analysis of loneliness-related affective states and cognitions with a focus on hypodopaminergic reward deficiency arising in the context of early life stress, eg, maternal separation, underscoring the importance of parental support early in life. Identification of the individual contributions by various (epi)genetic factors presents opportunities for the creation of innovative preventive, diagnostic, and therapeutic approaches for individuals who cope with persistent feelings of loneliness. The clinical facets and therapeutic prospects associated with the current understanding of loneliness, are discussed emphasizing the relevance of genes and DNA risk polymorphic variants in the context of loneliness-related morbidity.
Collapse
Affiliation(s)
- Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel
| | - Igor Elman
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Catherine A Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA, USA
| | - Marjorie C Gondré-Lewis
- Neuropsychopharmacology Laboratory, Department of Anatomy, Howard University College of Medicine, Washington, DC, 20059, USA
| | - Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, NIH National Institute on Drug Abuse, Bethesda, MD, 20892, USA
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, School of Medicine, Washington, DC, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA, 91766, USA
| | - Diwanshu Soni
- Western University Health Sciences School of Medicine, Pomona, CA, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Thomas J McLaughlin
- Division of Reward Deficiency Clinics, TranspliceGen Therapeutics, Inc, Austin, TX, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Texas Southern University College of Pharmacy, Houston, TX, USA
| | - Eric R Braverman
- Division of Clinical Neurology, The Kenneth Blum Institute of Neurogenetics & Behavior, LLC, Austin, TX, USA
| | - Mauro Ceccanti
- Alcohol Addiction Program, Latium Region Referral Center, Sapienza University of Rome, Roma, 00185, Italy
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY, 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY, 14203, USA
| | | | - Keerthy Sunder
- Karma Doctors & Karma TMS, and Suder Foundation, Palm Springs, CA, USA
- Department of Medicine, University of California, Riverside School of Medicine, Riverside, CA, USA
| | - Nicole Jafari
- Department of Human Development, California State University at Long Beach, Long Beach, CA, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
| | - Foojan Zeine
- Awareness Integration Institute, San Clemente, CA, USA
- Department of Health Science, California State University at Long Beach, Long Beach, CA, USA
| | | | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, WB, 721172, India
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Milan Makale
- Department of Radiation Medicine and Applied Sciences, UC San Diego, La Jolla, CA, 92093-0819, USA
| | - Kevin T Murphy
- Department of Radiation Oncology, University of California San Diego, La Jolla, CA, USA
| | - Kenneth Blum
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, 40700, Israel
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA, 91766, USA
- Division of Reward Deficiency Clinics, TranspliceGen Therapeutics, Inc, Austin, TX, USA
- Division of Clinical Neurology, The Kenneth Blum Institute of Neurogenetics & Behavior, LLC, Austin, TX, USA
- Department of Medicine, University of California, Riverside School of Medicine, Riverside, CA, USA
- Division of Personalized Medicine, Cross-Cultural Research and Educational Institute, San Clemente, CA, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Purba Medinipur, WB, 721172, India
- Department of Psychiatry, University of Vermont School of Medicine, Burlington, VA, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
5
|
Sagheddu C, Cancedda E, Bagheri F, Kalaba P, Muntoni AL, Lubec J, Lubec G, Sanna F, Pistis M. The Atypical Dopamine Transporter Inhibitor CE-158 Enhances Dopamine Neurotransmission in the Prefrontal Cortex of Male Rats: A Behavioral, Electrophysiological, and Microdialysis Study. Int J Neuropsychopharmacol 2023; 26:784-795. [PMID: 37725477 PMCID: PMC10674083 DOI: 10.1093/ijnp/pyad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Dopamine plays a key role in several physiological functions such as motor control, learning and memory, and motivation and reward. The atypical dopamine transporter inhibitor S,S stereoisomer of 5-(((S)-((S)-(3-bromophenyl)(phenyl)methyl)sulfinyl)methyl)thiazole (CE-158) has been recently reported to promote behavioral flexibility and restore learning and memory in aged rats. METHODS Adult male rats were i.p. administered for 1 or 10 days with CE-158 at the dose of 1 or 10 mg/kg and tested for extracellular dopamine in the medial prefrontal cortex by means of intracerebral microdialysis and single unit cell recording in the same brain area. Moreover, the effects of acute and chronic CE-158 on exploratory behavior, locomotor activity, prepulse inhibition, working memory, and behavioral flexibility were also investigated. RESULTS CE-158 dose-dependently potentiated dopamine neurotransmission in the medial prefrontal cortex as assessed by intracerebral microdialysis. Moreover, repeated exposure to CE-158 at 1 mg/kg was sufficient to increase the number of active pyramidal neurons and their firing frequency in the same brain area. In addition, CE-158 at the dose of 10 mg/kg stimulates exploratory behavior to the same extent after acute or chronic treatment. Noteworthy, the chronic treatment at both doses did not induce any behavioral alterations suggestive of abuse potential (e.g., motor behavioral sensitization) or pro-psychotic-like effects such as disruption of sensorimotor gating or impairments in working memory and behavioral flexibility as measured by prepulse inhibition and Y maze. CONCLUSIONS Altogether, these findings confirm CE-158 as a promising pro-cognitive agent and contribute to assessing its preclinical safety profile in a chronic administration regimen for further translational testing.
Collapse
Affiliation(s)
- Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Enzo Cancedda
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Farshid Bagheri
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Predrag Kalaba
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Fabrizio Sanna
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, Monserrato, Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, Cagliari, Italy
| |
Collapse
|
6
|
Shaikh A, Ahmad F, Teoh SL, Kumar J, Yahaya MF. Targeting dopamine transporter to ameliorate cognitive deficits in Alzheimer's disease. Front Cell Neurosci 2023; 17:1292858. [PMID: 38026688 PMCID: PMC10679733 DOI: 10.3389/fncel.2023.1292858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the pathologic deposition of amyloid and neurofibrillary tangles in the brain, leading to neuronal damage and defective synapses. These changes manifest as abnormalities in cognition and behavior. The functional deficits are also attributed to abnormalities in multiple neurotransmitter systems contributing to neuronal dysfunction. One such important system is the dopaminergic system. It plays a crucial role in modulating movement, cognition, and behavior while connecting various brain areas and influencing other neurotransmitter systems, making it relevant in neurodegenerative disorders like AD and Parkinson's disease (PD). Considering its significance, the dopaminergic system has emerged as a promising target for alleviating movement and cognitive deficits in PD and AD, respectively. Extensive research has been conducted on dopaminergic neurons, receptors, and dopamine levels as critical factors in cognition and memory in AD. However, the exact nature of movement abnormalities and other features of extrapyramidal symptoms are not fully understood yet in AD. Recently, a previously overlooked element of the dopaminergic system, the dopamine transporter, has shown significant promise as a more effective target for enhancing cognition while addressing dopaminergic system dysfunction in AD.
Collapse
Affiliation(s)
- Ammara Shaikh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Fairus Ahmad
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| | - Mohamad Fairuz Yahaya
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur, Malaysia
| |
Collapse
|
7
|
Kalaba P, Pacher K, Neill PJ, Dragacevic V, Zehl M, Wackerlig J, Kirchhofer M, Sartori SB, Gstach H, Kouhnavardi S, Fabisikova A, Pillwein M, Monje-Quiroga F, Ebner K, Prado-Roller A, Singewald N, Urban E, Langer T, Pifl C, Lubec J, Leban JJ, Lubec G. Chirality Matters: Fine-Tuning of Novel Monoamine Reuptake Inhibitors Selectivity through Manipulation of Stereochemistry. Biomolecules 2023; 13:1415. [PMID: 37759815 PMCID: PMC10527105 DOI: 10.3390/biom13091415] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/21/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
The high structural similarity, especially in transmembrane regions, of dopamine, norepinephrine, and serotonin transporters, as well as the lack of all crystal structures of human isoforms, make the specific targeting of individual transporters rather challenging. Ligand design itself is also rather limited, as many chemists, fully aware of the synthetic and analytical challenges, tend to modify lead compounds in a way that reduces the number of chiral centers and hence limits the potential chemical space of synthetic ligands. We have previously shown that increasing molecular complexity by introducing additional chiral centers ultimately leads to more selective and potent dopamine reuptake inhibitors. Herein, we significantly extend our structure-activity relationship of dopamine transporter-selective ligands and further demonstrate how stereoisomers of defined absolute configuration may fine-tune and direct the activity towards distinct targets. From the pool of active compounds, using the examples of stereoisomers 7h and 8h, we further showcase how in vitro activity significantly differs in in vivo drug efficacy experiments, calling for proper validation of individual stereoisomers in animal studies. Furthermore, by generating a large library of compounds with defined absolute configurations, we lay the groundwork for computational chemists to further optimize and rationally design specific monoamine transporter reuptake inhibitors.
Collapse
Affiliation(s)
- Predrag Kalaba
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Katharina Pacher
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Philip John Neill
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Vladimir Dragacevic
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Martin Zehl
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; (M.Z.); (A.F.)
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Michael Kirchhofer
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Simone B. Sartori
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, 6020 Innsbruck, Austria; (S.B.S.); (K.E.); (N.S.)
| | - Hubert Gstach
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Shima Kouhnavardi
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Anna Fabisikova
- Mass Spectrometry Centre, Faculty of Chemistry, University of Vienna, Währinger Straße 38, 1090 Vienna, Austria; (M.Z.); (A.F.)
| | - Matthias Pillwein
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Francisco Monje-Quiroga
- Center for Physiology and Pharmacology, Department of Neurophysiology and Neuropharmacology, Medical University of Vienna, 1090 Vienna, Austria;
| | - Karl Ebner
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, 6020 Innsbruck, Austria; (S.B.S.); (K.E.); (N.S.)
| | - Alexander Prado-Roller
- X-ray Structure Analysis Centre, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria;
| | - Nicolas Singewald
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), Leopold Franzens University Innsbruck, 6020 Innsbruck, Austria; (S.B.S.); (K.E.); (N.S.)
| | - Ernst Urban
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria; (P.K.); (K.P.); (P.J.N.); (V.D.); (J.W.); (M.K.); (H.G.); (S.K.); (M.P.); (E.U.); (T.L.)
| | - Christian Pifl
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria;
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria; (J.L.); (J.J.L.)
| | - Johann Jakob Leban
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria; (J.L.); (J.J.L.)
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria; (J.L.); (J.J.L.)
| |
Collapse
|
8
|
Lubec J, Hussein AM, Kalaba P, Feyissa DD, Arias-Sandoval E, Cybulska-Klosowicz A, Bezu M, Stojanovic T, Korz V, Malikovic J, Aher NY, Zehl M, Dragacevic V, Leban JJ, Sagheddu C, Wackerlig J, Pistis M, Correa M, Langer T, Urban E, Höger H, Lubec G. Low-Affinity/High-Selectivity Dopamine Transport Inhibition Sufficient to Rescue Cognitive Functions in the Aging Rat. Biomolecules 2023; 13:biom13030467. [PMID: 36979402 PMCID: PMC10046369 DOI: 10.3390/biom13030467] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/21/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The worldwide increase in cognitive decline, both in aging and with psychiatric disorders, warrants a search for pharmacological treatment. Although dopaminergic treatment approaches represent a major step forward, current dopamine transporter (DAT) inhibitors are not sufficiently specific as they also target other transporters and receptors, thus showing unwanted side effects. Herein, we describe an enantiomerically pure, highly specific DAT inhibitor, S-CE-123, synthetized in our laboratory. Following binding studies to DAT, NET and SERT, GPCR and kinome screening, pharmacokinetics and a basic neurotoxic screen, S-CE-123 was tested for its potential to enhance and/or rescue cognitive functions in young and in aged rats in the non-invasive reward-motivated paradigm of a hole-board test for spatial learning. In addition, an open field study with young rats was carried out. We demonstrated that S-CE-123 is a low-affinity but highly selective dopamine reuptake inhibitor with good bioavailability. S-CE-123 did not induce hyperlocomotion or anxiogenic or stereotypic behaviour in young rats. Our compound improved the performance of aged but not young rats in a reward-motivated task. The well-described impairment of the dopaminergic system in aging may underlie the age-specific effect. We propose S-CE-123 as a possible candidate for developing a tentative therapeutic strategy for age-related cognitive decline and cognitive dysfunction in psychiatric disorders.
Collapse
Affiliation(s)
- Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Ahmed M. Hussein
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
- Department of Zoology, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Predrag Kalaba
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Daniel Daba Feyissa
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | | | - Anita Cybulska-Klosowicz
- Neurobiology of Emotions Laboratory, Nencki Institute of Experimental Biology, 02093 Warsaw, Poland
| | - Mekite Bezu
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Tamara Stojanovic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Volker Korz
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Jovana Malikovic
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Nilima Y. Aher
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Martin Zehl
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Vladimir Dragacevic
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Johann Jakob Leban
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Judith Wackerlig
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Section of Cagliari, Neuroscience Institute, National Research Council of Italy (CNR), 09042 Cagliari, Italy
| | - Merce Correa
- Department of Psychobiology, Universitat Jaume I, 12006 Castelló, Spain
- Department of Psychological Sciences, Behavioral Neuroscience Division, University of Connecticut, Storrs, CT 06269, USA
| | - Thierry Langer
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Ernst Urban
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1090 Vienna, Austria
| | - Harald Höger
- Core Unit of Biomedical Research, Division of Laboratory Animal Science and Genetics, Medical University of Vienna, 2325 Himberg, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, 5020 Salzburg, Austria
- Correspondence: ; Tel.: +43-676-569-4816
| |
Collapse
|
9
|
Marcos JL, Olivares-Barraza R, Ceballo K, Wastavino M, Ortiz V, Riquelme J, Martínez-Pinto J, Muñoz P, Cruz G, Sotomayor-Zárate R. Obesogenic Diet-Induced Neuroinflammation: A Pathological Link between Hedonic and Homeostatic Control of Food Intake. Int J Mol Sci 2023; 24:ijms24021468. [PMID: 36674982 PMCID: PMC9866213 DOI: 10.3390/ijms24021468] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/13/2023] Open
Abstract
Obesity-induced neuroinflammation is a chronic aseptic central nervous system inflammation that presents systemic characteristics associated with increased pro-inflammatory cytokines such as interleukin 1 beta (IL-1β) and interleukin 18 (IL-18) and the presence of microglia and reactive astrogliosis as well as the activation of the NLRP3 inflammasome. The obesity pandemic is associated with lifestyle changes, including an excessive intake of obesogenic foods and decreased physical activity. Brain areas such as the lateral hypothalamus (LH), lateral septum (LS), ventral tegmental area (VTA), and nucleus accumbens (NAcc) have been implicated in the homeostatic and hedonic control of feeding in experimental models of diet-induced obesity. In this context, a chronic lipid intake triggers neuroinflammation in several brain regions such as the hypothalamus, hippocampus, and amygdala. This review aims to present the background defining the significant impact of neuroinflammation and how this, when induced by an obesogenic diet, can affect feeding control, triggering metabolic and neurological alterations.
Collapse
Affiliation(s)
- José Luis Marcos
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Escuela de Ciencias Agrícolas y Veterinarias, Universidad Viña del Mar, Viña del Mar 2572007, Chile
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Rossy Olivares-Barraza
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Karina Ceballo
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Programa de Doctorado en Ciencias Mención Neurociencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Melisa Wastavino
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Víctor Ortiz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Julio Riquelme
- Escuela de Medicina y Centro de Neurología Traslacional (CENTRAS), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Pablo Muñoz
- Escuela de Medicina y Centro de Neurología Traslacional (CENTRAS), Facultad de Medicina, Universidad de Valparaíso, Viña del Mar 2540064, Chile
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile
- Correspondence: ; Tel.: +56-32-2508050
| |
Collapse
|
10
|
Grochecki P, Smaga I, Surowka P, Marszalek-Grabska M, Kalaba P, Dragacevic V, Kotlinska P, Filip M, Lubec G, Kotlinska JH. Novel Dopamine Transporter Inhibitor, CE-123, Ameliorates Spatial Memory Deficits Induced by Maternal Separation in Adolescent Rats: Impact of Sex. Int J Mol Sci 2022; 23:ijms231810718. [PMID: 36142621 PMCID: PMC9503873 DOI: 10.3390/ijms231810718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal separation (MS) is a key contributor to neurodevelopmental disorders, including learning disabilities. To test the hypothesis that dopamine signaling is a major factor in this, an atypical new dopamine transporter (DAT) inhibitor, CE-123, was assessed for its potential to counteract the MS-induced spatial learning and memory deficit in male and female rats. Hence, neonatal rats (postnatal day (PND)1 to 21) were exposed to MS (180 min/day). Next, the acquisition of spatial learning and memory (Barnes maze task) and the expression of dopamine D1 receptor, dopamine transporter (DAT), and the neuronal GTPase, RIT2, which binds DAT in the vehicle-treated rats were evaluated in the prefrontal cortex and hippocampus in the adolescent animals. The results show that MS impairs the acquisition of spatial learning and memory in rats, with a more severe effect in females. Moreover, the MS induced upregulation of DAT and dopamine D1 receptors expression in the prefrontal cortex and hippocampus in adolescent rats. Regarding RIT2, the expression was decreased in the hippocampus for both the males and females, however, in the prefrontal cortex, reduction was found only in the females, suggesting that there are region-specific differences in DAT endocytic trafficking. CE-123 ameliorated the behavioral deficits associated with MS. Furthermore, it decreased the MS-induced upregulation of D1 receptor expression level in the hippocampus. These effects were more noted in females. Overall, CE-123, an atypical DAT inhibitor, is able to restore cognitive impairment and dopamine signaling in adolescent rats exposed to MS—with more evident effect in females than males.
Collapse
Affiliation(s)
- Pawel Grochecki
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
| | - Irena Smaga
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Paulina Surowka
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Marta Marszalek-Grabska
- Department of Experimental and Clinical Pharmacology, Medical University, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Predrag Kalaba
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Vladimir Dragacevic
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
| | | | - Malgorzata Filip
- Department of Drug Addiction Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, 1010 Vienna, Austria
- Paracelsus Private Medical University, 5020 Salzburg, Austria
| | - Jolanta H. Kotlinska
- Department of Pharmacology and Pharmacodynamics, Medical University, Chodzki 4A, 20-093 Lublin, Poland
- Correspondence: ; Tel.: +48-81-448-7255; Fax: +48-81-448-7250
| |
Collapse
|
11
|
A Novel and Selective Dopamine Transporter Inhibitor, (S)-MK-26, Promotes Hippocampal Synaptic Plasticity and Restores Effort-Related Motivational Dysfunctions. Biomolecules 2022; 12:biom12070881. [PMID: 35883437 PMCID: PMC9312958 DOI: 10.3390/biom12070881] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/09/2022] [Accepted: 06/21/2022] [Indexed: 11/20/2022] Open
Abstract
Dopamine (DA), the most abundant human brain catecholaminergic neurotransmitter, modulates key behavioral and neurological processes in young and senescent brains, including motricity, sleep, attention, emotion, learning and memory, and social and reward-seeking behaviors. The DA transporter (DAT) regulates transsynaptic DA levels, influencing all these processes. Compounds targeting DAT (e.g., cocaine and amphetamines) were historically used to shape mood and cognition, but these substances typically lead to severe negative side effects (tolerance, abuse, addiction, and dependence). DA/DAT signaling dysfunctions are associated with neuropsychiatric and progressive brain disorders, including Parkinson’s and Alzheimer diseases, drug addiction and dementia, resulting in devastating personal and familial concerns and high socioeconomic costs worldwide. The development of low-side-effect, new/selective medicaments with reduced abuse-liability and which ameliorate DA/DAT-related dysfunctions is therefore crucial in the fields of medicine and healthcare. Using the rat as experimental animal model, the present work describes the synthesis and pharmacological profile of (S)-MK-26, a new modafinil analogue with markedly improved potency and selectivity for DAT over parent drug. Ex vivo electrophysiology revealed significantly augmented hippocampal long-term synaptic potentiation upon acute, intraperitoneally delivered (S)-MK-26 treatment, whereas in vivo experiments in the hole-board test showed only lesser effects on reference memory performance in aged rats. However, in effort-related FR5/chow and PROG/chow feeding choice experiments, (S)-MK-26 treatment reversed the depression-like behavior induced by the dopamine-depleting drug tetrabenazine (TBZ) and increased the selection of high-effort alternatives. Moreover, in in vivo microdialysis experiments, (S)-MK-26 significantly increased extracellular DA levels in the prefrontal cortex and in nucleus accumbens core and shell. These studies highlight (S)-MK-26 as a potent enhancer of transsynaptic DA and promoter of synaptic plasticity, with predominant beneficial effects on effort-related behaviors, thus proposing therapeutic potentials for (S)-MK-26 in the treatment of low-effort exertion and motivational dysfunctions characteristic of depression and aging-related disorders.
Collapse
|
12
|
The Novel Analogue of Modafinil CE-158 Protects Social Memory against Interference and Triggers the Release of Dopamine in the Nucleus Accumbens of Mice. Biomolecules 2022; 12:biom12040506. [PMID: 35454095 PMCID: PMC9033101 DOI: 10.3390/biom12040506] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/10/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022] Open
Abstract
Previous studies have shown that atypical dopamine-transporter-inhibitors such as modafinil and its analogues modify behavioral and cognitive functions in rodents. Here, we tested potential promnestic effects of the novel, more dopamine-transporter selective modafinil analogue CE-158 in the social discrimination memory task in male mice. Systemic administration of CE-158 1 h before the social learning event prevented the impairment of social-recognition memory following retroactive interference 3 h after the learning session of a juvenile conspecific. This effect was dose-dependent, as mice treated with 10 mg/kg, but not with 1 mg/kg CE-158, were able to discriminate between the novel and familiar conspecific despite the presentation of an interference stimulus, both 3 h and 6 h post learning. However, when 10 mg/kg of the drug was administered after learning, CE-158 failed to prevent social memory from interference. Paralleling these behavioral effects, the systemic administration of 10 mg/kg CE-158 caused a rapid and sustained elevation of extracellular dopamine in the nucleus accumbens, a brain area where dopaminergic signaling plays a key role in learning and memory function, of freely moving mice, while 1 mg/kg was not sufficient for altering dopamine levels. Taken together, our findings suggest promnestic effects of the novel dopamine-transporter-inhibitor CE-158 in a social recognition memory test that may be in part mediated via increased dopamine-neurotransmission in the nucleus accumbens. Thus, selective-dopamine-transporter-inhibitors such as CE-158 may represent interesting drug candidates for the treatment of memory complaints observed in humans with cognitive impairments and dementia.
Collapse
|
13
|
Cognitive profiling and proteomic analysis of the modafinil analogue S-CE-123 in experienced aged rats. Sci Rep 2021; 11:23962. [PMID: 34907284 PMCID: PMC8671572 DOI: 10.1038/s41598-021-03372-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022] Open
Abstract
The lack of novel cognitive enhancer drugs in the clinic highlights the prediction problems of animal assays. The objective of the current study was to test a putative cognitive enhancer in a rodent cognitive test system with improved translational validity and clinical predictivity. Cognitive profiling was complemented with post mortem proteomic analysis. Twenty-seven male Lister Hooded rats (26 months old) having learned several cognitive tasks were subchronically treated with S-CE-123 (CE-123) in a randomized blind experiment. Rats were sacrificed after the last behavioural procedure and plasma and brains were collected. A label-free quantification approach was used to characterize proteomic changes in the synaptosomal fraction of the prefrontal cortex. CE-123 markedly enhanced motivation which resulted in superior performance in a new-to-learn operant discrimination task and in a cooperation assay of social cognition, and mildly increased impulsivity. The compound did not affect attention, spatial and motor learning. Proteomic quantification revealed 182 protein groups significantly different between treatment groups containing several proteins associated with aging and neurodegeneration. Bioinformatic analysis showed the most relevant clusters delineating synaptic vesicle recycling, synapse organisation and antioxidant activity. The cognitive profile of CE-123 mapped by the test system resembles that of modafinil in the clinic showing the translational validity of the test system. The findings of modulated synaptic systems are paralleling behavioral results and are in line with previous evidence for the role of altered synaptosomal protein groups in mechanisms of cognitive function.
Collapse
|
14
|
Reinstatement of synaptic plasticity in the aging brain through specific dopamine transporter inhibition. Mol Psychiatry 2021; 26:7076-7090. [PMID: 34244620 DOI: 10.1038/s41380-021-01214-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Aging-related neurological deficits negatively impact mental health, productivity, and social interactions leading to a pronounced socioeconomic burden. Since declining brain dopamine signaling during aging is associated with the onset of neurological impairments, we produced a selective dopamine transporter (DAT) inhibitor to restore endogenous dopamine levels and improve cognitive function. We describe the synthesis and pharmacological profile of (S,S)-CE-158, a highly specific DAT inhibitor, which increases dopamine levels in brain regions associated with cognition. We find both a potentiation of neurotransmission and coincident restoration of dendritic spines in the dorsal hippocampus, indicative of reinstatement of dopamine-induced synaptic plasticity in aging rodents. Treatment with (S,S)-CE-158 significantly improved behavioral flexibility in scopolamine-compromised animals and increased the number of spontaneously active prefrontal cortical neurons, both in young and aging rodents. In addition, (S,S)-CE-158 restored learning and memory recall in aging rats comparable to their young performance in a hippocampus-dependent hole board test. In sum, we present a well-tolerated, highly selective DAT inhibitor that normalizes the age-related decline in cognitive function at a synaptic level through increased dopamine signaling.
Collapse
|
15
|
Pintori N, Castelli MP, Miliano C, Simola N, Fadda P, Fattore L, Scherma M, Ennas MG, Mostallino R, Flore G, De Felice M, Sagheddu C, Pistis M, Di Chiara G, De Luca MA. Repeated exposure to JWH-018 induces adaptive changes in the mesolimbic and mesocortical dopaminergic pathways, glial cells alterations, and behavioural correlates. Br J Pharmacol 2021; 178:3476-3497. [PMID: 33837969 PMCID: PMC8457172 DOI: 10.1111/bph.15494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022] Open
Abstract
Background and Purpose Spice/K2 herbal mixtures, containing synthetic cannabinoids such as JWH‐018, have been marketed as marijuana surrogates since 2004. JWH‐018 has cannabinoid CB1 receptor‐dependent reinforcing properties and acutely increases dopaminergic transmission selectively in the NAc shell. Here, we tested the hypothesis that repeated administration of JWH‐018 (i) modulates behaviour, (ii) affects dopaminergic transmission and its responsiveness to motivational stimuli, and (iii) is associated with a neuroinflammatory phenotype. Experimental Approach Rats were administered with JWH‐018 once a day for 14 consecutive days. We then performed behavioural, electrophysiological, and neurochemical evaluation at multiple time points after drug discontinuation. Key Results Repeated JWH‐018 exposure (i) induced anxious and aversive behaviours, transitory attentional deficits, and withdrawal signs; (ii) decreased spontaneous activity and number of dopamine neurons in the VTA; and (iii) reduced stimulation of dopaminergic transmission in the NAc shell while potentiating that in the NAc core, in response to acute JWH‐018 challenge. Moreover, (iv) we observed a decreased dopamine sensitivity in the NAc shell and core, but not in the mPFC, to a first chocolate exposure; conversely, after a second exposure, dialysate dopamine fully increased in the NAc shell and core but not in the mPFC. Finally, selected dopamine brain areas showed (v) astrogliosis (mPFC, NAc shell and core, VTA), microgliosis (NAc shell and core), and downregulation of CB1 receptors (mPFC, NAc shell and core). Conclusion and Implications Repeated exposure to JWH‐018 may provide a useful model to clarify the detrimental effects of recurring use of Spice/K2 drugs.
Collapse
Affiliation(s)
- Nicholas Pintori
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Cristina Miliano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | - Nicola Simola
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | - Liana Fattore
- Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Grazia Ennas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Rafaela Mostallino
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Giovanna Flore
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marta De Felice
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Marco Pistis
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | - Gaetano Di Chiara
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.,Institute of Neuroscience-Cagliari, National Research Council, Rome, Italy
| | | |
Collapse
|
16
|
Early Adolescence Prefrontal Cortex Alterations in Female Rats Lacking Dopamine Transporter. Biomedicines 2021; 9:biomedicines9020157. [PMID: 33562738 PMCID: PMC7914429 DOI: 10.3390/biomedicines9020157] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/30/2022] Open
Abstract
Monoamine dysfunctions in the prefrontal cortex (PFC) can contribute to diverse neuropsychiatric disorders, including ADHD, bipolar disorder, PTSD and depression. Disrupted dopamine (DA) homeostasis, and more specifically dopamine transporter (DAT) alterations, have been reported in a variety of psychiatric and neurodegenerative disorders. Recent studies using female adult rats heterozygous (DAT+/-) and homozygous (DAT-/-) for DAT gene, showed the utility of those rats in the study of PTSD and ADHD. Currently, a gap in the knowledge of these disorders affecting adolescent females still represents a major limit for the development of appropriate treatments. The present work focuses on the characterization of the PFC function under conditions of heterozygous and homozygous ablation of DAT during early adolescence based on the known implication of DAT and PFC DA in psychopathology during adolescence. We report herein that genetic ablation of DAT in the early adolescent PFC of female rats leads to changes in neuronal and glial cell homeostasis. In brief, we observed a concurrent hyperactive phenotype, accompanied by PFC alterations in glutamatergic neurotransmission, signs of neurodegeneration and glial activation in DAT-ablated rats. The present study provides further understanding of underlying neuroinflammatory pathological processes that occur in DAT-ablated female rats, what can provide novel investigational approaches in human diseases.
Collapse
|