1
|
González-Ortiz A, Pulido-Capiz A, Castañeda-Sánchez CY, Ibarra-López E, Galindo-Hernández O, Calderón-Fernández MA, López-Cossio LY, Díaz-Molina R, Chimal-Vega B, Serafín-Higuera N, Córdova-Guerrero I, García-González V. eIF4A/PDCD4 Pathway, a Factor for Doxorubicin Chemoresistance in a Triple-Negative Breast Cancer Cell Model. Cells 2022; 11:4069. [PMID: 36552834 PMCID: PMC9776898 DOI: 10.3390/cells11244069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Cells employ several adaptive mechanisms under conditions of accelerated cell division, such as the unfolded protein response (UPR). The UPR is composed of a tripartite signaling system that involves ATF6, PERK, and IRE1, which maintain protein homeostasis (proteostasis). However, deregulation of protein translation initiation could be associated with breast cancer (BC) chemoresistance. Specifically, eukaryotic initiation factor-4A (eIF4A) is involved in the unfolding of the secondary structures of several mRNAs at the 5' untranslated region (5'-UTR), as well as in the regulation of targets involved in chemoresistance. Importantly, the tumor suppressor gene PDCD4 could modulate this process. This regulation might be disrupted in chemoresistant triple negative-BC (TNBC) cells. Therefore, we characterized the effect of doxorubicin (Dox), a commonly used anthracycline medication, on human breast carcinoma MDA-MB-231 cells. Here, we generated and characterized models of Dox chemoresistance, and chemoresistant cells exhibited lower Dox internalization levels followed by alteration of the IRE1 and PERK arms of the UPR and triggering of the antioxidant Nrf2 axis. Critically, chemoresistant cells exhibited PDCD4 downregulation, which coincided with a reduction in eIF4A interaction, suggesting a sophisticated regulation of protein translation. Likewise, Dox-induced chemoresistance was associated with alterations in cellular migration and invasion, which are key cancer hallmarks, coupled with changes in focal adhesion kinase (FAK) activation and secretion of matrix metalloproteinase-9 (MMP-9). Moreover, eIF4A knockdown via siRNA and its overexpression in chemoresistant cells suggested that eIF4A regulates FAK. Pro-atherogenic low-density lipoproteins (LDL) promoted cellular invasion in parental and chemoresistant cells in an MMP-9-dependent manner. Moreover, Dox only inhibited parental cell invasion. Significantly, chemoresistance was modulated by cryptotanshinone (Cry), a natural terpene purified from the roots of Salvia brandegeei. Cry and Dox co-exposure induced chemosensitization, connected with the Cry effect on eIF4A interaction. We further demonstrated the Cry binding capability on eIF4A and in silico assays suggest Cry inhibition on the RNA-processing domain. Therefore, strategic disruption of protein translation initiation is a druggable pathway by natural compounds during chemoresistance in TNBC. However, plasmatic LDL levels should be closely monitored throughout treatment.
Collapse
Affiliation(s)
- Alina González-Ortiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - César Y. Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Esmeralda Ibarra-López
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Maritza Anahí Calderón-Fernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Raul Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| | - Iván Córdova-Guerrero
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Tijuana 22424, Mexico
| | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Universidad Autónoma de Baja California, Mexicali 21000, Mexico
| |
Collapse
|
2
|
Pino Y, Aguilera JA, García-González V, Alatorre-Meda M, Rodríguez-Velázquez E, Espinoza KA, Frayde-Gómez H, Rivero IA. Synthesis of Aza-BODIPYs, Their Differential Binding for Cu(II), and Results of Bioimaging as Fluorescent Dyes of Langerhans β-Cells. ACS OMEGA 2022; 7:42752-42762. [PMID: 36467934 PMCID: PMC9713790 DOI: 10.1021/acsomega.2c04151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Cellular labeling through the use of dyes is of great interest to the biomedical sciences for the characterization of the location and distribution of biomolecules and also for the tracking of the course of biological processes in both health and illness. This paper reports the synthesis, characterization, and subsequent evaluation as metal sensors and cell staining probes of four aza-BODIPY compounds [herein referred to as 7(a-d)]. Compounds 7(b-d) were found to display an outstanding selectivity for Cu(II) because their emission band at 720 nm was progressively quenched by this metal, presenting fluorescence quenching between 75 and 95%. On the other hand, cell imaging studies with pancreatic β-cells proved that aza-BODIPYs 7a and 7b showed selectivity for the cytoplasm, while 7c and 7d were selective for the cell membrane. Moreover, aza-BODIPY 7b allowed to characterize in a clear way a lipotoxic condition mediated by saturated fatty acids, a critical phenomenon on β-cell damage associated with diabetes mellitus type II. Taken together, the presented results highlight the obtained aza-BODIPY compounds as selective sensing/staining probes with the potential to be used in the biomedical field.
Collapse
Affiliation(s)
- Yaneth
C. Pino
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| | - Jorge A. Aguilera
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| | - Víctor García-González
- Departamento
de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, BC 21100, México
| | - Manuel Alatorre-Meda
- Centro
de Graduados e Investigación en Química-Grupo de Biomateriales
y Nanomedicina, CONACyT-Tecnológico
Nacional de México/Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla
S/N, Tijuana, BC 22510, México
| | - Eustolia Rodríguez-Velázquez
- Facultad
de Odontología, Universidad Autónoma
de Baja California, Campus Tijuana, Calzada de Universidad 14418, Tijuana, BC 22390, México
- Centro
de Graduados e Investigación en Química-Grupo de Biomateriales
y Nanomedicina, Tecnológico Nacional
de México/Instituto Tecnológico de Tijuana, Blvd. Alberto Limón Padilla
S/N, Tijuana, BC 22510, México
| | - Karla A. Espinoza
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| | - Héctor Frayde-Gómez
- Departamento
de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, BC 21100, México
| | - Ignacio A. Rivero
- Centro
de Graduados e Investigación en Química, Tecnológico Nacional de México/Instituto
Tecnológico de Tijuana, Blvd. Alberto Limón Padilla S/N, Tijuana, BC 22510, México
| |
Collapse
|
3
|
Guevara-Olaya L, Chimal-Vega B, Castañeda-Sánchez CY, López-Cossio LY, Pulido-Capiz A, Galindo-Hernández O, Díaz-Molina R, Ruiz Esparza-Cisneros J, García-González V. LDL Promotes Disorders in β-Cell Cholesterol Metabolism, Implications on Insulin Cellular Communication Mediated by EVs. Metabolites 2022; 12:754. [PMID: 36005626 PMCID: PMC9415214 DOI: 10.3390/metabo12080754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Dyslipidemia is described as a hallmark of metabolic syndrome, promoting a stage of metabolic inflammation (metainflammation) that could lead to misbalances in energetic metabolism, contributing to insulin resistance, and modifying intracellular cholesterol pathways and the renin-angiotensin system (RAS) in pancreatic islets. Low-density lipoprotein (LDL) hypercholesterolemia could disrupt the tissue communication between Langerhans β-cells and hepatocytes, wherein extracellular vesicles (EVs) are secreted by β-cells, and exposition to LDL can impair these phenomena. β-cells activate compensatory mechanisms to maintain insulin and metabolic homeostasis; therefore, the work aimed to characterize the impact of LDL on β-cell cholesterol metabolism and the implication on insulin secretion, connected with the regulation of cellular communication mediated by EVs on hepatocytes. Our results suggest that β-cells can endocytose LDL, promoting an increase in de novo cholesterol synthesis targets. Notably, LDL treatment increased mRNA levels and insulin secretion; this hyperinsulinism condition was associated with the transcription factor PDX-1. However, a compensatory response that maintains basal levels of intracellular calcium was described, mediated by the overexpression of calcium targets PMCA1/4, SERCA2, and NCX1, together with the upregulation of the unfolded protein response (UPR) through the activation of IRE1 and PERK arms to maintain protein homeostasis. The LDL treatment induced metainflammation by IL-6, NF-κB, and COX-2 overexpression. Furthermore, LDL endocytosis triggered an imbalance of the RAS components. LDL treatment increased the intracellular levels of cholesterol on lipid droplets; the adaptive β-cell response was portrayed by the overexpression of cholesterol transporters ABCA1 and ABCG1. Therefore, lipotoxicity and hyperinsulinism induced by LDL were regulated by the natural compound auraptene, a geranyloxyn coumarin modulator of cholesterol-esterification by ACAT1 enzyme inhibition. EVs isolated from β-cells impaired insulin signaling via mTOR/p70S6Kα in hepatocytes, a phenomenon regulated by auraptene. Our results show that LDL overload plays a novel role in hyperinsulinism, mechanisms associated with a dysregulation of intracellular cholesterol, lipotoxicity, and the adaptive UPR, which may be regulated by coumarin-auraptene; these conditions explain the affectations that occur during the initial stages of insulin resistance.
Collapse
Affiliation(s)
- Lizbeth Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - César Yahel Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| |
Collapse
|
4
|
González-Ortiz A, Galindo-Hernández O, Hernández-Acevedo GN, Hurtado-Ureta G, García-González V. Impact of cholesterol-pathways on breast cancer development, a metabolic landscape. J Cancer 2021; 12:4307-4321. [PMID: 34093831 PMCID: PMC8176427 DOI: 10.7150/jca.54637] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/04/2021] [Indexed: 12/14/2022] Open
Abstract
ApoB-lipoproteins and their components modulate intracellular metabolism and have been associated with the development of neoplastic phenomena, such as proliferation, anchorage-independent growth, epithelial-mesenchymal transition, and cancer invasion. In cancer cells, the modulation of targets that regulate cholesterol metabolism, such as synthesis de novo, endocytosis, and oxidation, are contributing factors to cancer development. While mechanisms associated with sterol regulatory element-binding protein 2 (SREBP-2)/mevalonate, the low-density lipoprotein receptor (LDL-R) and liver X receptor (LXR) have been linked with tumor growth; metabolites derived from cholesterol-oxidation, such as oxysterols and epoxy-cholesterols, also have been described as tumor processes-inducers. From this notion, we perform an analysis of the role of lipoproteins, their association with intracellular cholesterol metabolism, and the impact of these conditions on breast cancer development, mechanisms that can be shared during atherogenesis promoted mainly by LDL. Pathways connecting plasma dyslipidemias in conjunction with the effect of cholesterol-derived metabolites on intracellular mechanisms and cellular plasticity phenomena could provide new approaches to elucidate the triggering factors of carcinogenesis, conditions that could be considered in the development of new therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, 21000 Mexicali, México
| |
Collapse
|
5
|
Novel Natural-based Biomolecules Discovery for Tackling Chronic Diseases. Biomolecules 2020; 10:biom10121674. [PMID: 33333911 PMCID: PMC7765416 DOI: 10.3390/biom10121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
In the last decade, natural-derived/-based biomolecules have continuously played an important role in novel drug discovery (as a prototype drug template) for potential chronic disease treatment [...]
Collapse
|