1
|
Agustia FC, Purnamasari DU, Rokhmah UF. Precooked Jack Bean [ Canavalia ensiformis (L.) DC] Sprout: Generation of Dipeptidyl Peptidase-IV Inhibitory Peptides during Simulated Digestion. Prev Nutr Food Sci 2024; 29:345-353. [PMID: 39371521 PMCID: PMC11450285 DOI: 10.3746/pnf.2024.29.3.345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 10/08/2024] Open
Abstract
Bioactive peptides generated from jack bean sprouts are reported to function as dipeptidyl peptidase IV (DPP-IV) inhibitors. However, no studies have investigated the effect of precooking followed by simulated digestion using pepsin-pancreatin to increase DPP-IV inhibitory peptide generation in jack bean sprouts. Therefore, the present study aimed to explore the generation of DPP-IV inhibitory peptides from precooked jack bean [Canavalia ensiformis (L.) DC] sprouts during simulated digestion with pepsin-pancreatin. The results showed that peptide fractions of the sample hydrolysate with molecular weight <1 kDa exhibited the strongest DPP-IV inhibitory activity (84.77%±0.49%) after simulated digestion. This activity was slightly greater than that (74.12%±0.85%) observed prior to simulated digestion. These findings demonstrate that the DPP-IV inhibitory activity of precooked jack bean sprouts can be retained following simulated digestion. Moreover, our investigation revealed the sequences of two novel peptides following simulated digestion with critical amino acids. The presence of alanine and glycine at the penultimate N-terminus of AAGPKP and LGDLLK confirmed the presence of DPP-IV inhibitors. Both peptide sequences are nontoxic and interact with the catalytic sites of enzymes through hydrogen bonds.
Collapse
Affiliation(s)
- Friska Citra Agustia
- Department of Nutrition Science, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto 53122, Indonesia
| | - Dyah Umiyarni Purnamasari
- Department of Nutrition Science, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto 53122, Indonesia
| | - Umi Faza Rokhmah
- Department of Nutrition Science, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto 53122, Indonesia
| |
Collapse
|
2
|
Pan W, Gu F, Yan X, Huang J, Liao H, Niu F. Biomacromolecular carriers based hydrophobic natural products for potential cancer therapy. Int J Biol Macromol 2024; 269:132274. [PMID: 38734357 DOI: 10.1016/j.ijbiomac.2024.132274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Cancer is the second leading cause of death worldwide. It was estimated that 90 % of cancer-related deaths were attributable to the development of multi-drug resistance (MDR) during chemotherapy, which results in ineffective chemotherapy. Hydrophobic natural products plays a pivotal role in the field of cancer therapy, with the potential to reverse MDR in tumor cells, thereby enhancing the efficacy of tumor therapy. However, their targeted delivery is considered a major hurdle in their application. The advent of numerous approaches for encapsulating bioactive ingredients in the nanodelivery systems has improved the stability and targeted delivery of these biomolecules. The manuscript comprehensively analyses the nanodelivery systems of bioactive compounds with potential cancer therapy applications, including liposomes, emulsions, solid lipid nanoparticles (NPs), and polymeric NPs. Then, the advantages and disadvantages of various nanoagents in the treatment of various cancer types are critically discussed. Further, the application of multiple-compbine delivery methods to overcome the limitations of single-delivery have need critically analyzed, which thus could help in the designing nanodrug delivery systems for bioactive compounds in clinical settings. Therefore, the review is timely and important for development of efficient nanodelivery systems involving hydrophobic natural products to improve pharmacokinetic properties for effective cancer treatment.
Collapse
Affiliation(s)
- Weichun Pan
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Feina Gu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Xinyu Yan
- College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Jianghui Huang
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Huabin Liao
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Fuge Niu
- Food Safety Key Lab of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China.
| |
Collapse
|
3
|
Milčić N, Švaco P, Sudar M, Tang L, Findrik Blažević Z, Majerić Elenkov M. Impact of organic solvents on the catalytic performance of halohydrin dehalogenase. Appl Microbiol Biotechnol 2023; 107:2351-2361. [PMID: 36881116 DOI: 10.1007/s00253-023-12450-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/15/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023]
Abstract
Biocatalytic transformations in organic synthesis often require the use of organic solvents to improve substrate solubility and promote the product formation. Halohydrin dehalogenases (HHDHs) are enzymes that catalyze the formation and conversion of epoxides, important synthetic class of compounds that are often sparingly soluble in water and prone to hydrolysis. In this study, the activity, stability, and enantioselectivity of HHDH from Agrobacterium radiobacter AD1 (HheC) in form of cell-free extract were evaluated in various aqueous-organic media. A correlation was discovered between the enzyme activity in the ring-closure reaction and logP of the solvent. Knowledge of such a relationship makes biocatalysis with organic solvents more predictable, which may reduce the need to experiment with a variety of solvents in the future. The results revealed a high enzyme compatibility with hydrophobic solvents (e.g., n-heptane) in terms of activity and stability. Regarding the HHDH applicability in an organic medium, inhibitions by a number of solvents (e.g., THF, toluene, chloroform) proved to be a more challenging problem than the protein stability, especially in the ring-opening reaction, thus suggesting which solvents should be avoided. In addition, solvent tolerance of the thermostable variant ISM-4 was also evaluated, revealing increased stability and to a lesser extent enantioselectivity compared to the wild-type. This is the first time such a systematic analysis has been reported, giving insight into the behavior of HHDHs in nonconventional media and opening new opportunities for the future biocatalytic applications. KEY POINTS: • HheC performs better in the presence of hydrophobic than hydrophilic solvents. • Enzyme activity in the PNSHH ring-closure reaction is a function of the logP. • Thermostability of ISM-4 variant is accompanied by superior solvent tolerance.
Collapse
Affiliation(s)
- Nevena Milčić
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c, 16, Zagreb, Croatia
| | - Petra Švaco
- Ruđer Bošković Institute, Bijenička c, 54, Zagreb, Croatia
| | - Martina Sudar
- Faculty of Chemical Engineering and Technology, University of Zagreb, Savska c, 16, Zagreb, Croatia
| | - Lixia Tang
- University of Electronic Science and Technology, No. 4, Section 2, North Jianshe Road, Chengdu, China
| | | | | |
Collapse
|
4
|
Nikfarjam S, Gibbons R, Burni F, Raghavan SR, Anisimov MA, Woehl TJ. Chemically Fueled Dissipative Cross-Linking of Protein Hydrogels Mediated by Protein Unfolding. Biomacromolecules 2023; 24:1131-1140. [PMID: 36795055 DOI: 10.1021/acs.biomac.2c01186] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Cells assemble dynamic protein-based nanostructures far from equilibrium, such as microtubules, in a process referred to as dissipative assembly. Synthetic analogues have utilized chemical fuels and reaction networks to form transient hydrogels and molecular assemblies from small molecule or synthetic polymer building blocks. Here, we demonstrate dissipative cross-linking of transient protein hydrogels using a redox cycle, which exhibit protein unfolding-dependent lifetimes and mechanical properties. Fast oxidation of cysteine groups on bovine serum albumin by hydrogen peroxide, the chemical fuel, formed transient hydrogels with disulfide bond cross-links that degraded over hours by a slow reductive back reaction. Interestingly, despite increased cross-linking, the hydrogel lifetime decreased as a function of increasing denaturant concentration. Experiments showed that the solvent-accessible cysteine concentration increased with increasing denaturant concentration due to unfolding of secondary structures. The increased cysteine concentration consumed more fuel, which led to less direction oxidation of the reducing agent and affected a shorter hydrogel lifetime. Increased hydrogel stiffness, disulfide cross-linking density, and decreased oxidation of redox-sensitive fluorescent probes at a high denaturant concentration provided evidence supporting the unveiling of additional cysteine cross-linking sites and more rapid consumption of hydrogen peroxide at higher denaturant concentrations. Taken together, the results indicate that the protein secondary structure mediated the transient hydrogel lifetime and mechanical properties by mediating the redox reactions, a feature unique to biomacromolecules that exhibit a higher order structure. While prior works have focused on the effects of the fuel concentration on dissipative assembly of non-biological molecules, this work demonstrates that the protein structure, even in nearly fully denatured proteins, can exert similar control over reaction kinetics, lifetime, and resulting mechanical properties of transient hydrogels.
Collapse
Affiliation(s)
- Shakiba Nikfarjam
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Rebecca Gibbons
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Faraz Burni
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Srinivasa R Raghavan
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| | - Mikhail A Anisimov
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
- Institute for Physical Sciences and Technology, University of Maryland, College Park, Maryland 20740, United States
| | - Taylor J Woehl
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, Maryland 20740, United States
| |
Collapse
|
5
|
Li Z, Han Q, Sun FY, Li S, Liu J, Liu X, Lu JJ, Li W. Unraveling effects of multivalent salts on internal fouling by proteins in NF-like forward osmosis. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
6
|
Design, Optimization, and Characterization of Lysozyme-Loaded Poly(ɛ-Caprolactone) Microparticles for Pulmonary Delivery. J Pharm Innov 2022. [DOI: 10.1007/s12247-022-09648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Han Q, Binns J, Zhai J, Guo X, Ryan TM, Drummond CJ, Greaves TL. Insights on lysozyme aggregation in protic ionic liquid solvents by using small angle X-ray scattering and high throughput screening. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Lin A, Peiris NJ, Dhaliwal H, Hakim M, Li W, Ganesh S, Ramaswamy Y, Patel S, Misra A. Mural Cells: Potential Therapeutic Targets to Bridge Cardiovascular Disease and Neurodegeneration. Cells 2021; 10:cells10030593. [PMID: 33800271 PMCID: PMC7999039 DOI: 10.3390/cells10030593] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Mural cells collectively refer to the smooth muscle cells and pericytes of the vasculature. This heterogenous population of cells play a crucial role in the regulation of blood pressure, distribution, and the structural integrity of the vascular wall. As such, dysfunction of mural cells can lead to the pathogenesis and progression of a number of diseases pertaining to the vascular system. Cardiovascular diseases, particularly atherosclerosis, are perhaps the most well-described mural cell-centric case. For instance, atherosclerotic plaques are most often described as being composed of a proliferative smooth muscle cap accompanied by a necrotic core. More recently, the role of dysfunctional mural cells in neurodegenerative diseases, such as Alzheimer’s and Parkinson’s disease, is being recognized. In this review, we begin with an exploration of the mechanisms underlying atherosclerosis and neurodegenerative diseases, such as mural cell plasticity. Next, we highlight a selection of signaling pathways (PDGF, Notch and inflammatory signaling) that are conserved across both diseases. We propose that conserved mural cell signaling mechanisms can be exploited for the identification or development of dual-pronged therapeutics that impart both cardio- and neuroprotective qualities.
Collapse
MESH Headings
- Alzheimer Disease/drug therapy
- Alzheimer Disease/genetics
- Alzheimer Disease/metabolism
- Alzheimer Disease/pathology
- Animals
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Cardiotonic Agents/pharmacology
- Disease Models, Animal
- Gene Expression Regulation
- Humans
- Mice
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neuroprotective Agents/pharmacology
- Parkinson Disease/drug therapy
- Parkinson Disease/genetics
- Parkinson Disease/metabolism
- Parkinson Disease/pathology
- Pericytes/drug effects
- Pericytes/metabolism
- Pericytes/pathology
- Plaque, Atherosclerotic/drug therapy
- Plaque, Atherosclerotic/genetics
- Plaque, Atherosclerotic/metabolism
- Plaque, Atherosclerotic/pathology
- Platelet-Derived Growth Factor/genetics
- Platelet-Derived Growth Factor/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Signal Transduction
Collapse
Affiliation(s)
- Alexander Lin
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Niridu Jude Peiris
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Harkirat Dhaliwal
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Maria Hakim
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Weizhen Li
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Subramaniam Ganesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India;
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Yogambha Ramaswamy
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Sanjay Patel
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Sydney Medical School, The University of Sydney, Sydney, NSW 2006, Australia
- Cardiac Catheterization Laboratory, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Ashish Misra
- Heart Research Institute, Sydney, NSW 2042, Australia; (A.L.); (N.J.P.); (H.D.); (M.H.); (W.L.); (S.P.)
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Correspondence: ; Tel.: +61-18-0065-1373
| |
Collapse
|
9
|
Dauer K, Pfeiffer-Marek S, Kamm W, Wagner KG. Microwell Plate-Based Dynamic Light Scattering as a High-Throughput Characterization Tool in Biopharmaceutical Development. Pharmaceutics 2021; 13:pharmaceutics13020172. [PMID: 33514069 PMCID: PMC7911513 DOI: 10.3390/pharmaceutics13020172] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 01/03/2023] Open
Abstract
High-throughput light scattering instruments are widely used in screening of biopharmaceutical formulations and can be easily incorporated into processes by utilizing multi-well plate formats. High-throughput plate readers are helpful tools to assess the aggregation tendency and colloidal stability of biological drug candidates based on the diffusion self-interaction parameter (kD). However, plate readers evoke issues about the precision and variability of determined data. In this article, we report about the statistical evaluation of intra- and inter-plate variability (384-well plates) for the kD analysis of protein and peptide solutions. ANOVA revealed no significant differences between the runs. In conclusion, the reliability and precision of kD was dependent on the plate position of the sample replicates and kD value. Positive kD values (57.0 mL/g, coefficients of variation (CV) 8.9%) showed a lower variability compared to negative kD values (−14.8 mL/g, CV 13.4%). The variability of kD was not reduced using more data points (120 vs. 30). A kD analysis exclusively based on center wells showed a lower CV (<2%) compared to edge wells (5–12%) or a combination of edge and center wells (2–5%). We present plate designs for kD analysis within the early formulation development, screening up to 20 formulations consuming less than 50 mg of active pharmaceutical ingredient (API).
Collapse
Affiliation(s)
- Katharina Dauer
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany;
- Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany; (S.P.-M.); (W.K.)
| | - Stefania Pfeiffer-Marek
- Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany; (S.P.-M.); (W.K.)
| | - Walter Kamm
- Tides Drug Product Pre-Development Sciences, Sanofi-Aventis Deutschland GmbH, Industrial Park Hoechst, 65926 Frankfurt am Main, Germany; (S.P.-M.); (W.K.)
| | - Karl G. Wagner
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Bonn, 53121 Bonn, Germany;
- Correspondence:
| |
Collapse
|
10
|
Intracellular Ionic Strength Sensing Using NanoLuc. Int J Mol Sci 2021; 22:ijms22020677. [PMID: 33445497 PMCID: PMC7826950 DOI: 10.3390/ijms22020677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 12/20/2022] Open
Abstract
Intracellular ionic strength regulates myriad cellular processes that are fundamental to cellular survival and proliferation, including protein activity, aggregation, phase separation, and cell volume. It could be altered by changes in the activity of cellular signaling pathways, such as those that impact the activity of membrane-localized ion channels or by alterations in the microenvironmental osmolarity. Therefore, there is a demand for the development of sensitive tools for real-time monitoring of intracellular ionic strength. Here, we developed a bioluminescence-based intracellular ionic strength sensing strategy using the Nano Luciferase (NanoLuc) protein that has gained tremendous utility due to its high, long-lived bioluminescence output and thermal stability. Biochemical experiments using a recombinantly purified protein showed that NanoLuc bioluminescence is dependent on the ionic strength of the reaction buffer for a wide range of ionic strength conditions. Importantly, the decrease in the NanoLuc activity observed at higher ionic strengths could be reversed by decreasing the ionic strength of the reaction, thus making it suitable for sensing intracellular ionic strength alterations. Finally, we used an mNeonGreen–NanoLuc fusion protein to successfully monitor ionic strength alterations in a ratiometric manner through independent fluorescence and bioluminescence measurements in cell lysates and live cells. We envisage that the biosensing strategy developed here for detecting alterations in intracellular ionic strength will be applicable in a wide range of experiments, including high throughput cellular signaling, ion channel functional genomics, and drug discovery.
Collapse
|