1
|
Cucurbitacin B Down-Regulates TNF Receptor 1 Expression and Inhibits the TNF-α-Dependent Nuclear Factor κB Signaling Pathway in Human Lung Adenocarcinoma A549 Cells. Int J Mol Sci 2022; 23:ijms23137130. [PMID: 35806134 PMCID: PMC9267118 DOI: 10.3390/ijms23137130] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 12/30/2022] Open
Abstract
Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), induce the expression of intracellular adhesion molecule-1 (ICAM-1) by activating the nuclear factor κB (NF-κB) signaling pathway. In the present study, we found that cucurbitacin B decreased the expression of ICAM-1 in human lung adenocarcinoma A549 cells stimulated with TNF-α or interleukin-1α. We further investigated the mechanisms by which cucurbitacin B down-regulates TNF-α-induced ICAM-1 expression. Cucurbitacin B inhibited the nuclear translocation of the NF-κB subunit RelA and the phosphorylation of IκBα in A549 cells stimulated with TNF-α. Cucurbitacin B selectively down-regulated the expression of TNF receptor 1 (TNF-R1) without affecting three adaptor proteins (i.e., TRADD, RIPK1, and TRAF2). The TNF-α-converting enzyme inhibitor suppressed the down-regulation of TNF-R1 expression by cucurbitacin B. Glutathione, N-acetyl-L-cysteine, and, to a lesser extent, L-cysteine attenuated the inhibitory effects of cucurbitacin B on the TNF-α-induced expression of ICAM-1, suggesting that an α,β-unsaturated carbonyl moiety is essential for anti-inflammatory activity. The present results revealed that cucurbitacin B down-regulated the expression of TNF-R1 at the initial step in the TNF-α-dependent NF-κB signaling pathway.
Collapse
|
2
|
Heger T, Zatloukal M, Kubala M, Strnad M, Gruz J. Procyanidin C1 from Viola odorata L. inhibits Na +,K +-ATPase. Sci Rep 2022; 12:7011. [PMID: 35487935 PMCID: PMC9055044 DOI: 10.1038/s41598-022-11086-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 04/13/2022] [Indexed: 01/30/2023] Open
Abstract
Members of the Viola genus play important roles in traditional Asian herbal medicine. This study investigates the ability of Viola odorata L. extracts to inhibit Na+,K+-ATPase, an essential animal enzyme responsible for membrane potential maintenance. The root extract of V. odorata strongly inhibited Na+,K+-ATPase, while leaf and seeds extracts were basically inactive. A UHPLC-QTOF-MS/MS metabolomic approach was used to identify the chemical principle of the root extract’s activity, resulting in the detection of 35,292 features. Candidate active compounds were selected by correlating feature area with inhibitory activity in 14 isolated fractions. This yielded a set of 15 candidate compounds, of which 14 were preliminarily identified as procyanidins. Commercially available procyanidins (B1, B2, B3 and C1) were therefore purchased and their ability to inhibit Na+,K+-ATPase was investigated. Dimeric procyanidins B1, B2 and B3 were found to be inactive, but the trimeric procyanidin C1 strongly inhibited Na+,K+-ATPase with an IC50 of 4.5 µM. This newly discovered inhibitor was docked into crystal structures mimicking the Na3E1∼P·ADP and K2E2·Pi states to identify potential interaction sites within Na+,K+-ATPase. Possible binding mechanisms and the principle responsible for the observed root extract activity are discussed.
Collapse
Affiliation(s)
- Tomas Heger
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Martin Kubala
- Department of Experimental Physics, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences, Palacky University, Olomouc, Czech Republic
| | - Jiri Gruz
- Department of Experimental Biology, Faculty of Science, Palacky University, Olomouc, Czech Republic.
| |
Collapse
|
3
|
Bai S, Zhang K, Ding X, Wang J, Zeng Q, Peng H, Bai J, Xuan Y, Su Z, Wu B. Uptake of Manganese from the Manganese-Lysine Complex in Primary Chicken Intestinal Epithelial Cells. Animals (Basel) 2019; 9:ani9080559. [PMID: 31443255 PMCID: PMC6720897 DOI: 10.3390/ani9080559] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Manganese (Mn) supplementation is especially necessary to avian species because the absorption of dietary Mn is relatively inefficient in birds. Recently, there has been increasing interest in the use of organic Mn to replace inorganic Mn as dietary Mn supplements in poultry. This study compared the uptake of Mn from Mn-lysine complex (MnLys) and MnSO4 in the primary chicken intestinal epithelial cells when the Fe, N-ethylmaleimide (a transport system y+ inhibitor), or cycloheximide (a transport system b0,+ activator) added in the culture medium. The results revealed that the uptake of Mn from the MnLys complex not only might be transported through the ionized Mn2+ pathway, but also appeared to be transported through the transport systems y+ and b0,+ in the intestine of chickens. Abstract Organic manganese (Mn) sources can replace inorganic Mn as dietary Mn supplements in poultry. To compare the uptake of Mn from the Mn-lysine complex (MnLys) and MnSO4, we first established the primary chicken intestinal epithelial cells (IECs) model and used it to determine Mn uptake. The MnLys increased the uptake of Mn compared to MnSO4. The uptake of Mn decreased in the IECs with Fe addition in the medium regardless of the Mn sources. The MnLys decreased the Mn2+ efflux transporter ferroportin 1 (FPN1) mRNA level but did not influence the Mn2+ influx transporter divalent metal transporter 1 (DMT1) mRNA expression when compared to MnSO4. The results above indicated that the increase of Mn accumulation for MnLys at least partly was due to the decrease of Mn efflux by reduced FPN1 expression. The addition of N-ethylmaleimide, an L-lysine transport system y+ inhibitor, decreased the uptake of Mn from MnLys but did not affect the uptake of Mn from MnSO4. The cycloheximide, as an L-lysine transport system b0,+ activator, increased the uptake of Mn from MnLys, whereas they did not influence the uptake of Mn from MnSO4. The MnLys increased the system y+ members cationic amino acid transporter (CAT) 1 and CAT2, and system b0,+ components rBAT and b0,+AT mRNA expression when compared to MnSO4. These results suggested that the uptake of MnLys complex might be transported by CAT1/2 and system b0,+, which was different from the ionized Mn2+ uptake pathway. In conclusion, the uptake of Mn from MnLys complex not only might be uptake through the ionized Mn2+ pathway, but also appeared to be transported through the CAT1/2 and system b0,+ in primary chicken IECs.
Collapse
Affiliation(s)
- Shiping Bai
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China.
| | - Keying Zhang
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Xuemei Ding
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Qiufeng Zeng
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Huanwei Peng
- Institute of Animal Nutrition, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Jie Bai
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Yue Xuan
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Zuowei Su
- Key Laboratory of Animal Disease-resistant Nutrition, Ministry of Education, Sichuan Agricultural University, Huimin Road 211#, Wenjiang District, Chengdu 611130, Sichuan, China
| | - Bin Wu
- Chinese Chelota Group, Liangshui Industrial Estate, Jinyu District, Guanghan 618300, Sichuan, China
| |
Collapse
|
4
|
Mochizuki M, Uozumi T, Hisaka S, Osawa T. Ursolic Acid and Derivatives Exhibit Anti-atherosclerotic Activity by Inhibiting the Expression of Cell Adhesion Molecules Induced by TNF-alpha. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Mika Mochizuki
- Department of Health and Nutrition Faculty of Psychological and Physical Science, Aichi Gakuin University
| | - Taichi Uozumi
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences
| | | | - Toshihiko Osawa
- Department of Health and Nutrition Faculty of Psychological and Physical Science, Aichi Gakuin University
| |
Collapse
|
5
|
Carvalho FB, Boligon AA, Athayde ML, Rubin MA, Ferreira J, Trevisan G. Inhibitory effect of Scutia buxifolia extracts, fractions, and ursolic acid on Na(+), K(+)-ATPase activity in vitro in membranes purified from rat hearts. JOURNAL OF ETHNOPHARMACOLOGY 2016; 179:45-54. [PMID: 26719288 DOI: 10.1016/j.jep.2015.12.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/19/2015] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutia buxifolia is a tree native to South America and is used as a cardiotonic agent; however, this property has not been associated with a clear mechanism or a specific compound. AIM OF THE STUDY Given the importance of Na(+),K(+)-ATPase as a drug target in the treatment of heart failure, this study aimed to investigate the possible inhibitory effect of S. buxifolia crude extract and fractions (dichloromethane, ethyl acetate, and butanolic fractions), and identified compounds with effects on the activity of Na(+),K(+)-ATPase in vitro. MATERIALS AND METHODS First, we characterized the crude extract and fractions by high-performance liquid chromatography, and then monitored their effects on the activity of Na(+),K(+)-ATPase obtained from heart muscle and brain membranes of adult male Wistar rats. RESULTS We identified gallic acid, chlorogenic acid, caffeic acid, rutin, quercitrin, quercetin, and ursolic acid in S. buxifolia stem bark and leaves; quercitrin and ursolic acid were the main compounds in the ethyl acetate and dichloromethane fractions from leaves and stem bark. The crude extract (3 and 30mg/ml), and the ethyl acetate and dichloromethane fractions (0.1 and 1mg/ml) of both the stem bark and leaves inhibited Na(+),K(+)-ATPase activity in heart and brain samples. We found that, of the identified compounds, only ursolic acid (0.1mg/ml) was able to diminish Na(+), K(+)-ATPase activity in heart and brain samples. CONCLUSIONS These data indicated that the cardiotonic effects of S. buxifolia may be due to the inhibition of Na(+),K(+)-ATPase activity in heart muscle, supporting the popular use of this plant as a treatment for heart failure.
Collapse
Affiliation(s)
- Fabiano B Carvalho
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Aline A Boligon
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Margareth L Athayde
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Maribel A Rubin
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria (UFSM), 97105-900 Santa Maria, RS, Brazil
| | - Juliano Ferreira
- Programa de Pós-graduação em Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina (UFSC), 88049-900 Florianópolis, SC, Brazil
| | - Gabriela Trevisan
- Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense (Unesc), 88806-000 Criciúma, SC, Brazil.
| |
Collapse
|
6
|
Syntia F, Nehmé R, Claude B, Morin P. Human neutrophil elastase inhibition studied by capillary electrophoresis with laser induced fluorescence detection and microscale thermophoresis. J Chromatogr A 2016; 1431:215-223. [PMID: 26777089 DOI: 10.1016/j.chroma.2015.12.079] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 12/22/2015] [Accepted: 12/28/2015] [Indexed: 12/13/2022]
Abstract
Capillary electrophoresis-laser induced fluorescence (CZE-LIF) and microscale thermophoresis (MST) were used for the first time to study the inhibition of human neutrophil elastase (HNE). We recently studied HNE kinetics (Km and Vmax) by developing an in-capillary CZE-LIF assay based on transverse diffusion of laminar flow profiles (TDLFP) for reactant mixing. In this work, the former assay was adapted to monitor HNE inhibition. Two natural well known HNE inhibitors from the triterpene family, ursolic acid and oleanolic acid, were tested to validate the developed assay. Since the solubility of pentacyclic triterpenes in aqueous media where the enzymatic reaction will take place is limited, the effect of DMSO and ethanol on HNE was studied using microscale thermophoresis (MST). An agglomeration of the enzyme was revealed when preparing the inhibitor in 5% (v/v) DMSO. This phenomenon did not occur in the presence of ethanol. Therefore, ethanol was used as inhibitor solvent, at a limited percentage of 20% (v/v). In these conditions and after optimization of the TDLFP approach, the repeatability (RSD on migration times and peak-areas inferior to 2.2%) of the CZE-LIF assay and the sensitivity (LOQ of few nM) were found to be satisfactory for conducting inhibition assays. IC50 values for ursolic and oleanolic acid were successfully determined. They were respectively equal to 5.62±0.10μM (r(2)=0.9807; n=3) and to 8.21±0.23μM (r(2)=0.9887; n=3). Excellent agreement was found between the results obtained by CE and those reported in literature which validates the developed method. Particularly, the CE-based assay is able to rank HNE inhibitors relative to each other. Furthermore, MST technique was used for evaluating HNE interaction with the ursolic acid. Up to 16 capillaries were automatically processed to obtain in one titration experiment the dissociation constant for the HNE-ursolic acid complex. Ki was found to be 2.72±0.66μM (n=3) which is in excellent agreement with the value determined by CE enzyme inhibition studies (Ki=2.81μM) confirming the reliability of the developed CE assay and the competitive inhibition mode of ursolic acid.
Collapse
Affiliation(s)
- Fayad Syntia
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS FR 2708, UMR 7311, Orléans, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS FR 2708, UMR 7311, Orléans, France.
| | - Bérengère Claude
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS FR 2708, UMR 7311, Orléans, France
| | - Philippe Morin
- Institut de Chimie Organique et Analytique, Université d'Orléans, CNRS FR 2708, UMR 7311, Orléans, France
| |
Collapse
|
7
|
Betulinic acid and oleanolic acid, natural pentacyclic triterpenoids, interfere with N-linked glycan modifications to intercellular adhesion molecule-1, but not its intracellular transport to the cell surface. Eur J Pharmacol 2015; 767:126-34. [PMID: 26460147 DOI: 10.1016/j.ejphar.2015.10.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 01/11/2023]
Abstract
Betulinic acid (3β-hydroxy-20(29)-lupen-28-oic acid), oleanolic acid (3β-hydroxy-olean-12-en-28-oic acid), and ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) are close structural isomers of natural pentacyclic triterpenoid carboxylic acids. We recently identified a unique biological effect of ursolic acid, its inhibition of the intracellular trafficking of glycoproteins. In the present study, we demonstrated that betulinic acid and oleanolic acid did not inhibit the interleukin-1α-induced expression of cell-surface intercellular adhesion molecule-1 (ICAM-1) in human lung carcinoma A549 cells. Nevertheless, betulinic acid and, to a lesser extent, oleanolic acid interfered with N-linked glycan modifications to ICAM-1 in a similar manner to castanospermine (an inhibitor of endoplasmic reticulum α-glucosidases I and II), but not swainsonine (an inhibitor of Golgi α-mannosidase II). Consistent with these results, betulinic acid and oleanolic acid inhibited yeast α-glucosidase activity, but not Jack bean α-mannosidase activity. Thus, to the best of our knowledge, this is the first study to show that betulinic acid and oleanolic acid interfere with N-linked glycan modifications to ICAM-1, but not its intracellular transport to the cell surface.
Collapse
|
8
|
Mitsuda S, Yokomichi T, Yokoigawa J, Kataoka T. Ursolic acid, a natural pentacyclic triterpenoid, inhibits intracellular trafficking of proteins and induces accumulation of intercellular adhesion molecule-1 linked to high-mannose-type glycans in the endoplasmic reticulum. FEBS Open Bio 2014; 4:229-39. [PMID: 24649404 PMCID: PMC3958921 DOI: 10.1016/j.fob.2014.02.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 12/22/2022] Open
Abstract
Ursolic acid inhibits cell-surface expression of ICAM-1. Ursolic acid induces accumulation of high-mannose-type ICAM-1 in ER. Ursolic acid induces morphological changes of Golgi apparatus. Ursolic acid inhibits intracellular trafficking of proteins.
Ursolic acid (3β-hydroxy-urs-12-en-28-oic acid) is a natural pentacyclic triterpenoid that is present in many plants, including medicinal herbs, and foods. Ursolic acid was initially identified as an inhibitor of the expression of intercellular adhesion molecule-1 (ICAM-1) in response to interleukin-1α (IL-1α). We report here a novel biological activity: ursolic acid inhibits intracellular trafficking of proteins. Ursolic acid markedly inhibited the IL-1α-induced cell-surface ICAM-1 expression in human cancer cell lines and human umbilical vein endothelial cells. By contrast, ursolic acid exerted weak inhibitory effects on the IL-1α-induced ICAM-1 expression at the protein level. Surprisingly, we found that ursolic acid decreased the apparent molecular weight of ICAM-1 and altered the structures of N-linked oligosaccharides bound to ICAM-1. Ursolic acid induced the accumulation of ICAM-1 in the endoplasmic reticulum, which was linked mainly to high-mannose-type glycans. Moreover, in ursolic-acid-treated cells, the Golgi apparatus was fragmented into pieces and distributed over the cells. Thus, our results reveal that ursolic acid inhibits intracellular trafficking of proteins and induces the accumulation of ICAM-1 linked to high-mannose-type glycans in the endoplasmic reticulum.
Collapse
Key Words
- BSA, bovine serum albumin
- ER, endoplasmic reticulum
- Endo H, endoglycosidase H
- Glycosylation
- Golgi apparatus
- HRP, horseradish peroxidase
- HUVEC, human umbilical vein endothelial cells
- ICAM-1, intercellular adhesion molecule-1
- IL-1, interleukin-1
- Intercellular adhesion molecule-1
- Intracellular trafficking
- IκB, inhibitor of nuclear factor κB
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NF-κB, nuclear factor κB
- PBS, phosphate-buffered saline
- PNGase F, peptide: N-glycosidase F
- Ursolic acid
Collapse
Affiliation(s)
- Satoshi Mitsuda
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Tomonobu Yokomichi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Junpei Yokoigawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|