1
|
Li J, Buonfiglio F, Zeng Y, Pfeiffer N, Gericke A. Oxidative Stress in Cataract Formation: Is There a Treatment Approach on the Horizon? Antioxidants (Basel) 2024; 13:1249. [PMID: 39456502 PMCID: PMC11505147 DOI: 10.3390/antiox13101249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Cataracts, a leading cause of blindness worldwide, are closely linked to oxidative stress-induced damage to lens epithelial cells (LECs). Key factors contributing to cataract formation include aging, arterial hypertension, and diabetes mellitus. Given the high global prevalence of cataracts, the burden of cataract-related visual impairment is substantial, highlighting the need for pharmacological strategies to supplement surgical interventions. Understanding the molecular pathways involved in oxidative stress during cataract development may offer valuable insights for designing novel therapeutic approaches. This review explores the role of oxidative stress in cataract formation, focusing on critical mechanisms, such as mitochondrial dysfunction, endoplasmic reticulum stress, loss of gap junctions, and various cell death pathways in LECs. Additionally, we discuss emerging therapeutic strategies and potential targeting options, including antioxidant-based treatments.
Collapse
Affiliation(s)
- Jingyan Li
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| | | | | | | | - Adrian Gericke
- Department of Ophthalmology, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany; (F.B.); (Y.Z.); (N.P.)
| |
Collapse
|
2
|
Tong Y, Wang G, Riquelme MA, Du Y, Quan Y, Fu J, Gu S, Jiang JX. Mechano-activated connexin hemichannels and glutathione transport protect lens fiber cells against oxidative insults. Redox Biol 2024; 73:103216. [PMID: 38820983 PMCID: PMC11170479 DOI: 10.1016/j.redox.2024.103216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024] Open
Abstract
Long-lived lens fiber cells require a robust cellular protective function against oxidative insults to maintain their hemostasis and viability; however, the underlying mechanism is largely obscure. In this study, we unveiled a new mechanism that protects lens fiber cells against oxidative stress-induced cell death. We found that mechano-activated connexin (Cx) hemichannels (HCs) mediate the transport of glutathione (GSH) into chick embryonic fibroblasts (CEF) and primary lens fiber cells, resulting in a decrease in the accumulation of intracellular reactive oxygen species induced by both H2O2 and ultraviolet B, providing protection to lens fiber cells against cell apoptosis and necrosis. Furthermore, HCs formed by both homomeric Cx50 or Cx46 and heteromeric Cx50/Cx46 were mechanosensitive and could transport GSH into CEF cells. Notably, mechano-activated Cx50 HCs exhibited a greater capacity to transport GSH than Cx46 HCs. Consistently, the deficiency of Cx50 in single lens fiber cells led to a higher level of oxidative stress. Additionally, outer cortical short lens fiber cells expressing full length Cxs demonstrated greater resistance to oxidative injury compared to central core long lens fibers. Taken together, our results suggest that the activation of Cx HCs by interstitial fluid flow in cultured epithelial cells and isolated fiber cells shows that HCs can serve as a pathway for moving GSH across the cell membrane to offer protection against oxidative stress.
Collapse
Affiliation(s)
- Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha, 410011, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, 410011, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA; Department of Ophthalmology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Manuel A Riquelme
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yu Du
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jialing Fu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
3
|
Chai TQ, Chen GY, Chen LX, Wang JL, Zhang CY, Yang FQ. Adenine phosphate-Cu nanozyme with multienzyme mimicking activity for efficient degrading phenolic compounds and detection of hydrogen peroxide, epinephrine and glutathione. Anal Chim Acta 2023; 1279:341771. [PMID: 37827670 DOI: 10.1016/j.aca.2023.341771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND With the development of nanotechnology, various nanomaterials with enzyme-like activity (nanozymes) have been reported. Due to their superior properties, nanozymes have shown important application potential in the fields of bioanalysis, disease detection, and environmental remediation. However, only a few nanomaterials with multi-enzyme mimicry activity have been reported. In this study, a novel multienzyme mimic was synthesized through a simple and rapid preparation protocol by coordinating copper ions with N3, N6 (amino), N7, and N9 on adenine phosphate. RESULTS The prepared adenine phosphate-Cu complex exhibits significant peroxidase, laccase, and oxidase mimicking activities. The Michaelis-Menten constant (Km) and the maximal velocity (Vmax) values of the peroxidase, laccase, and oxidase mimicking activities of AP-Cu nanozyme are 0.052 mM, 0.14 mM, and 2.49 mM; and 0.552 μM min-1, 6.70 μM min-1, and 2.24 μM min-1, respectively. Then, based on its laccase mimicking activity, the nanozyme was applied in the degradation of phenolic compounds. The calculated kinetic constant for the degradation of 2,4-dichlorophenol is 0.468 min-1 and the degradation efficiency of 2,4-dichlorophenol (0.1 mM) reaches 96.14% at 7 min. Finally, based on the multienzyme mimicking activity of adenine phosphate-Cu nanozyme, simple colorimetric sensing methods with high sensitivity and good selectivity were developed for the detection of hydrogen peroxide, epinephrine, and glutathione in the ranges of 20.0-200.0 μM (R2 = 0.9951), 5.0-100.0 μM (R2 = 0.9970), and 5.0-200.0 μM (R2 = 0.9924) with the limits of quantitation of 20.0 μM, 5.0 μM, and 5.0 μM, respectively. SIGNIFICANCE In short, the synthesis of nanozymes with multi-enzyme mimicry activity through coordination between copper ions and small molecule mimicry enzymes provides new ideas for the design and research of multi-enzyme mimics.
Collapse
Affiliation(s)
- Tong-Qing Chai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Guo-Ying Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Ling-Xiao Chen
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Jia-Li Wang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Chun-Yan Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
4
|
Du Y, Tong Y, Quan Y, Wang G, Cheng H, Gu S, Jiang JX. Protein kinase A activation alleviates cataract formation via increased gap junction intercellular communication. iScience 2023; 26:106114. [PMID: 36852280 PMCID: PMC9958365 DOI: 10.1016/j.isci.2023.106114] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/09/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Cataract is the leading cause of blindness worldwide. Here, we reported a potential, effective therapeutic mean for cataract prevention and treatment. Gap junction communication, an important mechanism in maintaining lens transparency, is increased by protein kinase A (PKA). We found that PKA activation reduced cataracts induced by oxidative stress, increased gap junctions/hemichannels in connexin (Cx) 50, Cx46 or Cx50 and Cx46 co-expressing cells, and decreased reactive oxygen species (ROS) levels. However, ROS reduction was shown in wild-type, Cx46 and Cx50 knockout, but not in Cx46/Cx50 double KO lens. In addition, PKA activation protects lens fiber cell death induced by oxidative stress via hemichannel-mediated glutathione transport. Connexin deletion increased lens opacity induced by oxidative stress associated with reduction of anti-oxidative stress gene expression. Together, our results suggest that PKA activation through increased connexin channels in lens fiber cell decreases ROS levels and cell death, leading to alleviated cataracts.
Collapse
Affiliation(s)
- Yu Du
- Department of Ophthalmology, Lanzhou University Second Hospital; Second Clinical School, Lanzhou University, Lanzhou, Gansu, 730000, China
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yuxin Tong
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Yumeng Quan
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Guangyan Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
- Department of Ophthalmology, First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Hongyun Cheng
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Sumin Gu
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA
| |
Collapse
|
5
|
Abstract
Gap junctions, comprising connexin proteins, create conduits directly coupling the cytoplasms of adjacent cells. Expressed in essentially all tissues, dynamic gap junction structures enable the exchange of small molecules including ions and second messengers, and are central to maintenance of homeostasis and synchronized excitability. With such diverse and critical roles throughout the body, it is unsurprising that alterations to gap junction and/or connexin expression and function underlie a broad array of age-related pathologies. From neurological dysfunction to cardiac arrhythmia and bone loss, it is hard to identify a human disease state that does not involve reduced, or in some cases inappropriate, intercellular communication to affect organ function. With a complex life cycle encompassing several key regulatory steps, pathological gap junction remodeling during ageing can arise from alterations in gene expression, translation, intracellular trafficking, and posttranslational modification of connexins. Connexin proteins are now known to "moonlight" and perform a variety of non-junctional functions in the cell, independent of gap junctions. Furthermore, connexin "hemichannels" on the cell surface can communicate with the extracellular space without ever coupling to an adjacent cell to form a gap junction channel. This chapter will focus primarily on gap junctions in ageing, but such non-junctional connexin functions will be referred to where appropriate and the full spectrum of connexin biology should be noted as potentially causative/contributing to some findings in connexin knockout animals, for example.
Collapse
Affiliation(s)
- Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA. .,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA. .,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
6
|
Quinlan RA, Clark JI. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J Biol Chem 2022; 298:102537. [PMID: 36174677 PMCID: PMC9638808 DOI: 10.1016/j.jbc.2022.102537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
In the human eye, a transparent cornea and lens combine to form the "refracton" to focus images on the retina. This requires the refracton to have a high refractive index "n," mediated largely by extracellular collagen fibrils in the corneal stroma and the highly concentrated crystallin proteins in the cytoplasm of the lens fiber cells. Transparency is a result of short-range order in the spatial arrangement of corneal collagen fibrils and lens crystallins, generated in part by post-translational modifications (PTMs). However, while corneal collagen is remodeled continuously and replaced, lens crystallins are very long-lived and are not replaced and so accumulate PTMs over a lifetime. Eventually, a tipping point is reached when protein aggregation results in increased light scatter, inevitably leading to the iconic protein condensation-based disease, age-related cataract (ARC). Cataracts account for 50% of vision impairment worldwide, affecting far more people than other well-known protein aggregation-based diseases. However, because accumulation of crystallin PTMs begins before birth and long before ARC presents, we postulate that the lens protein PTMs contribute to a "cataractogenic load" that not only increases with age but also has protective effects on optical function by stabilizing lens crystallins until a tipping point is reached. In this review, we highlight decades of experimental findings that support the potential for PTMs to be protective during normal development. We hypothesize that ARC is preventable by protecting the biochemical and biophysical properties of lens proteins needed to maintain transparency, refraction, and optical function.
Collapse
Affiliation(s)
- Roy A Quinlan
- Department of Biosciences, Durham University, South Road Science Site, Durham, United Kingdom; Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| | - John I Clark
- Department of Biological Structure, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
7
|
Varadaraj K, Gao J, Mathias RT, Kumari SS. GPX1 knockout, not catalase knockout, causes accelerated abnormal optical aberrations and cataract in the aging lens. Mol Vis 2022; 28:11-20. [PMID: 35400989 PMCID: PMC8942455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/20/2022] [Indexed: 11/14/2022] Open
Abstract
Purpose Glutathione peroxidase 1 (GPX1) and catalase are expressed in the lens epithelial cells and cortical fiber cells, where they detoxify H2O2 to reduce oxidative stress, which is a major cause for cataractogenesis. We sought to find out, between these two enzymes, which is critical for transparency and homeostasis in the aging lens by investigating alterations in the lens's refractive property, transparency, and gap junction coupling (GJC) resistance. Methods Wild-type (C57BL/6J), GPX1 knockout (GPX1-/-) and catalase knockout (CAT-/-) mice were used. Lens transparency was quantified using dark-field images and ImageJ software. For optical aberration evaluation, each lens was placed over a copper electron microscopy specimen grid; the grid image was captured through the lens using a digital camera attached to a dark-field binocular microscope. Optical aberrations were assessed by the quality of the magnified gridlines. Microelectrode-based intact lens intracellular impedance was measured to determine GJC resistance. Results In contrast to wild-type (WT) and CAT-/- lenses, GPX1-/- lenses developed accelerated age-related cataracts. While two-month-old lenses were normal, at nine months of age, GPX1-/- mice started to show the development of abnormal optical distortion aberrations and loss of transparency. At 12 months of age, GPX1-/- lenses developed significant opacity and abnormal optical distortion aberrations compared to CAT-/- and WT (p<0.001); these aberrations gradually increased with age and matured into cataracts by 24 months of age. There was also a significant increase (p<0.001) in GJC resistance in the differentiating and mature fiber cells of GPX1-/- lenses at 12 months of age compared to that in similar areas of age-matched CAT-/- and WT lenses. Conclusions Changes in the refractive and physiological properties of the lens occurred before cataract formation in GPX1-/- lenses but not in CAT-/- lenses. GPX1 is more critical than catalase for lens transparency, optical quality, and homeostasis in the aging lens under normal physiological conditions. GPX1 could be a promising therapeutic target for developing potential strategies to reduce adverse oxidative stress and delay/treat/prevent age-related cataracts.
Collapse
|
8
|
Shi Y, Li X, Yang J. Mutations of CX46/CX50 and Cataract Development. Front Mol Biosci 2022; 9:842399. [PMID: 35223995 PMCID: PMC8874012 DOI: 10.3389/fmolb.2022.842399] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/12/2022] [Indexed: 12/24/2022] Open
Abstract
Cataract is a common disease in the aging population. Gap junction has been considered a central component in maintaining homeostasis for preventing cataract formation. Gap junction channels consist of connexin proteins with more than 20 members. Three genes including GJA1, GJA3, and GJA8, that encode protein Cx43 (connexin43), Cx46 (connexin46), and Cx50 (connexin50), respectively, have been identified in human and rodent lens. Cx46 together with Cx50 have been detected in lens fiber cells with high expression, whereas Cx43 is mainly expressed in lens epithelial cells. Disrupted expression of the two connexin proteins Cx46 and Cx50 is directly related to the development of severe cataract in human and mice. In this review article, we describe the main role of Cx46 and Cx50 connexin proteins in the lens and the relationship between mutations of Cx46 or Cx50 and hereditary cataracts. Furthermore, the latest progress in the fundamental research of lens connexin and the mechanism of cataract formation caused by lens connexin dysfunction are summarized. Overall, targeting connexin could be a novel approach for the treatment of cataract.
Collapse
Affiliation(s)
- Yumeng Shi
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
| | - Xinbo Li
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, United States
- *Correspondence: Jin Yang, ; Xinbo Li,
| | - Jin Yang
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Department of Ophthalmology and Visual Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- *Correspondence: Jin Yang, ; Xinbo Li,
| |
Collapse
|
9
|
Quan Y, Du Y, Tong Y, Gu S, Jiang JX. Connexin Gap Junctions and Hemichannels in Modulating Lens Redox Homeostasis and Oxidative Stress in Cataractogenesis. Antioxidants (Basel) 2021; 10:1374. [PMID: 34573006 PMCID: PMC8464761 DOI: 10.3390/antiox10091374] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 11/18/2022] Open
Abstract
The lens is continuously exposed to oxidative stress insults, such as ultraviolet radiation and other oxidative factors, during the aging process. The lens possesses powerful oxidative stress defense systems to maintain its redox homeostasis, one of which employs connexin channels. Connexins are a family of proteins that form: (1) Hemichannels that mediate the communication between the intracellular and extracellular environments, and (2) gap junction channels that mediate cell-cell communication between adjacent cells. The avascular lens transports nutrition and metabolites through an extensive network of connexin channels, which allows the passage of small molecules, including antioxidants and oxidized wastes. Oxidative stress-induced post-translational modifications of connexins, in turn, regulates gap junction and hemichannel permeability. Recent evidence suggests that dysfunction of connexins gap junction channels and hemichannels may induce cataract formation through impaired redox homeostasis. Here, we review the recent advances in the knowledge of connexin channels in lens redox homeostasis and their response to cataract-related oxidative stress by discussing two major aspects: (1) The role of lens connexins and channels in oxidative stress and cataractogenesis, and (2) the impact and underlying mechanism of oxidative stress in regulating connexin channels.
Collapse
Affiliation(s)
| | | | | | | | - Jean X. Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA; (Y.Q.); (Y.D.); (Y.T.); (S.G.)
| |
Collapse
|
10
|
Aasen T. Connexins, Innexins, and Pannexins: From Biology to Clinical Targets. Biomolecules 2021; 11:biom11020155. [PMID: 33504027 PMCID: PMC7912696 DOI: 10.3390/biom11020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 11/22/2022] Open
Affiliation(s)
- Trond Aasen
- Patologia Molecular Translacional, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Passeig Vall d'Hebron 119-129, 08035 Barcelona, Spain
- CIBER de Cáncer (CIBERONC), Instituto de Salud Carlos III, Avenida de Monforte de Lemos 3-5, 28029 Madrid, Spain
- Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|