1
|
Paul NF, Gustmann K, Tetens J, Falker-Gieske C. MG132 dramatically reduces SAA expression in chicken hepatocellular carcinoma cells at the transcript level independent of its endogenous promoter. Mol Biol Rep 2024; 51:770. [PMID: 38896168 PMCID: PMC11186868 DOI: 10.1007/s11033-024-09726-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND MG132, a proteasome inhibitor, is widely used to inhibit nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activity by proteasome-mediated degradation of IκB. It has been marketed as a specific, reversible, cell-permeable and low-cost inhibitor. However, adverse effects of the compound have been reported in the literature. We recently discovered and characterised a point mutation in the acute phase protein serum amyloid A (SAA) in chickens, by overexpressing the protein in chicken hepatocellular carcinoma (LMH) cells. This serine to arginine exchange at amino acid position 90 (SAA.R90S) leads to intra- and extracellular accumulation of SAA, which is surprisingly counteracted by MG132 treatment, independent of SAA's intrinsic promoter. METHODS AND RESULTS To test, whether low proteasomal degradation of SAA.R90S is responsible for the observed intra- and extracellular SAA accumulation, we intended to inhibit the proteasome in SAA wild type (SAA.WT) overexpressing cells with MG132. However, we observed an unexpected drastic decrease in SAA protein expression at the transcript level. NF-κB gene expression was unchanged by MG132 at the measured time point. CONCLUSIONS The observed results demonstrate that MG132 inhibits SAA expression at the transcript level, independent of its endogenous promoter. Further, the data might indicate that NF-κB is not involved in the observed MG132-induced inhibition of SAA expression. We, consequently, question in this brief report whether MG132 should truly be categorised as a specific ubiquitin proteasome inhibitor and recommend the usage of alternative compounds.
Collapse
Affiliation(s)
- Nora-Fabienne Paul
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Karolin Gustmann
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
| | - Jens Tetens
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany
| | - Clemens Falker-Gieske
- Department of Animal Sciences, Division of Functional Breeding, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
- Center for Integrated Breeding Research, Georg-August-University, Albrecht-Thaer-Weg 3, 37075, Göttingen, Germany.
| |
Collapse
|
2
|
San TT, Kim J, Kim HJ. Histone Lysine Demethylase KDM5 Inhibitor CPI-455 Induces Astrocytogenesis in Neural Stem Cells. ACS Chem Neurosci 2024; 15:1570-1580. [PMID: 38501572 DOI: 10.1021/acschemneuro.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024] Open
Abstract
Lysine-specific histone demethylase 5A (KDM5A) is known to facilitate proliferation in cancer cells and maintain stemness to repress the astrocytic differentiation of neural stem cells (NSCs). In the study presented here, we investigated the effect of a KDM5 inhibitor, CPI-455, on NSC fate control. CPI-455 induced astrocytogenesis in NSCs during differentiation. Kdm5a, but not Kdm5c, knockdown induced glial fibrillary acidic protein (Gfap) transcription. CPI-455 induced signal transducer and activator of transcription 3, increased bone morphogenetic protein 2 expression, and enhanced mothers against decapentaplegic homolog 1/5/9 phosphorylation. The treatment of CPI-455 enhanced the methylation of histone H3 lysine 4 in the Gfap promoter when compared to that of the dimethyl sulfoxide control. In addition, CPI-455 treatment significantly reduced the recruitment of KDM5A to the Gfap promoter. Our data suggest that the KDM5 inhibitor CPI-455 effectively controls NSC cell fate via KDM5A inhibition and induces astrocytogenesis.
Collapse
Affiliation(s)
- Thin Thin San
- Neuropharmacology and Stem Cell Lab, College of Pharmacy, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Junhyung Kim
- Neuropharmacology and Stem Cell Lab, College of Pharmacy, Chung-Ang University, 06974 Seoul, Republic of Korea
| | - Hyun-Jung Kim
- Neuropharmacology and Stem Cell Lab, College of Pharmacy, Chung-Ang University, 06974 Seoul, Republic of Korea
| |
Collapse
|
3
|
Wu Q, Liu WJ, Ma XY, Chang JS, Zhao XY, Liu YH, Yu XY. Zonisamide attenuates pressure overload-induced myocardial hypertrophy in mice through proteasome inhibition. Acta Pharmacol Sin 2024; 45:738-750. [PMID: 38097716 PMCID: PMC10943222 DOI: 10.1038/s41401-023-01191-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 11/02/2023] [Indexed: 03/17/2024] Open
Abstract
Myocardial hypertrophy is a pathological thickening of the myocardium which ultimately results in heart failure. We previously reported that zonisamide, an antiepileptic drug, attenuated pressure overload-caused myocardial hypertrophy and diabetic cardiomyopathy in murine models. In addition, we have found that the inhibition of proteasome activates glycogen synthesis kinase 3 (GSK-3) thus alleviates myocardial hypertrophy, which is an important anti-hypertrophic strategy. In this study, we investigated whether zonisamide prevented pressure overload-caused myocardial hypertrophy through suppressing proteasome. Pressure overload-caused myocardial hypertrophy was induced in mice by trans-aortic constriction (TAC) surgery. Two days after the surgery, the mice were administered zonisamide (10, 20, 40 mg·kg-1·d-1, i.g.) for four weeks. We showed that zonisamide administration significantly mitigated impaired cardiac function. Furthermore, zonisamide administration significantly inhibited proteasome activity as well as the expression levels of proteasome subunit beta types (PSMB) of the 20 S proteasome (PSMB1, PSMB2 and PSMB5) and proteasome-regulated particles (RPT) of the 19 S proteasome (RPT1, RPT4) in heart tissues of TAC mice. In primary neonatal rat cardiomyocytes (NRCMs), zonisamide (0.3 μM) prevented myocardial hypertrophy triggered by angiotensin II (Ang II), and significantly inhibited proteasome activity, proteasome subunits and proteasome-regulated particles. In Ang II-treated NRCMs, we found that 18α-glycyrrhetinic acid (18α-GA, 2 mg/ml), a proteasome inducer, eliminated the protective effects of zonisamide against myocardial hypertrophy and proteasome. Moreover, zonisamide treatment activated GSK-3 through inhibiting the phosphorylated AKT (protein kinase B, PKB) and phosphorylated liver kinase B1/AMP-activated protein kinase (LKB1/AMPKα), the upstream of GSK-3. Zonisamide treatment also inhibited GSK-3's downstream signaling proteins, including extracellular signal-regulated kinase (ERK) and GATA binding protein 4 (GATA4), both being the hypertrophic factors. Collectively, this study highlights the potential of zonisamide as a new therapeutic agent for myocardial hypertrophy, as it shows potent anti-hypertrophic potential through the suppression of proteasome.
Collapse
Affiliation(s)
- Qian Wu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wan-Jie Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-Yu Ma
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Shuo Chang
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiao-Ya Zhao
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ying-Hua Liu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xi-Yong Yu
- Department of Pharmacology, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
4
|
Yu J, Chen G, Zhu H, Zhong Y, Yang Z, Jian Z, Xiong X. Metabolic and proteostatic differences in quiescent and active neural stem cells. Neural Regen Res 2024; 19:43-48. [PMID: 37488842 PMCID: PMC10479840 DOI: 10.4103/1673-5374.375306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/16/2023] [Accepted: 04/17/2023] [Indexed: 07/26/2023] Open
Abstract
Adult neural stem cells are neurogenesis progenitor cells that play an important role in neurogenesis. Therefore, neural regeneration may be a promising target for treatment of many neurological illnesses. The regenerative capacity of adult neural stem cells can be characterized by two states: quiescent and active. Quiescent adult neural stem cells are more stable and guarantee the quantity and quality of the adult neural stem cell pool. Active adult neural stem cells are characterized by rapid proliferation and differentiation into neurons which allow for integration into neural circuits. This review focuses on differences between quiescent and active adult neural stem cells in nutrition metabolism and protein homeostasis. Furthermore, we discuss the physiological significance and underlying advantages of these differences. Due to the limited number of adult neural stem cells studies, we referred to studies of embryonic adult neural stem cells or non-mammalian adult neural stem cells to evaluate specific mechanisms.
Collapse
Affiliation(s)
- Jiacheng Yu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yi Zhong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhenxing Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
5
|
Sohn SY, San TT, Kim J, Kim HJ. Bortezomib Is Toxic but Induces Neurogenesis and Inhibits TUBB3 Degradation in Rat Neural Stem Cells. Biomol Ther (Seoul) 2024; 32:65-76. [PMID: 38072501 PMCID: PMC10762278 DOI: 10.4062/biomolther.2023.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 12/28/2023] Open
Abstract
Bortezomib (BTZ) is a proteasome inhibitor used to treat multiple myeloma (MM). However, the induction of peripheral neuropathy is one of the major concerns in using BTZ to treat MM. In the current study, we have explored the effects of BTZ (0.01-5 nM) on rat neural stem cells (NSCs). BTZ (5 nM) induced cell death; however, the percentage of neurons was increased in the presence of mitogens. BTZ reduced the B-cell lymphoma 2 (Bcl-2)/Bcl-2 associated X protein ratio in proliferating NSCs and differentiated cells. Inhibition of βIII-tubulin (TUBB3) degradation was observed, but not inhibition of glial fibrillary acidic protein degradation, and a potential PEST sequence was solely found in TUBB3. In the presence of growth factors, BTZ increased cAMP response element-binding protein (CREB) phosphorylation, brain-derived neurotrophic factor (Bdnf) transcription, BDNF expression, and Tubb3 transcription in NSCs. However, in the neuroblastoma cell line, SH-SY5Y, BTZ (1-20 nM) only increased cell death without increasing CREB phosphorylation, Bdnf transcription, or TUBB3 induction. These results suggest that although BTZ induces cell death, it activates neurogenic signals and induces neurogenesis in NSCs.
Collapse
Affiliation(s)
- Seung Yeon Sohn
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Thin Thin San
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Junhyung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
6
|
Gazzaroli G, Angeli A, Giacomini A, Ronca R. Proteasome inhibitors as anticancer agents. Expert Opin Ther Pat 2023; 33:775-796. [PMID: 37847492 DOI: 10.1080/13543776.2023.2272648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/16/2023] [Indexed: 10/18/2023]
Abstract
INTRODUCTION The therapeutic targeting of the ubiquitin-proteasome pathway (UPP) through inhibitors of the 20S proteasome core proteolytic activities has revolutionized the treatment of hematological malignancies and is paving the way for its extension to solid tumors. AREAS COVERED This review covers the progress made in the field of proteasome inhibitors, ranging from the first-generation bortezomib to the latest second-generation inhibitors such as carfilzomib and ixazomib as well as the proteasome inhibitors in clinical phase such as oprozomib and marizomib. The development of selective and potent proteasome inhibitors with improved pharmacological properties is described from the synthesis to their basic biological, and clinical validation. EXPERT OPINION Proteasome inhibitors have transformed the treatment landscape for hematological malignancies and hold great promise for cancer therapy. Combination therapies targeting multiple pathways, the development of novel inhibitors or 'hybrid-inhibitors,' and the optimization of treatment protocols are key areas for future exploration. The extension of proteasome inhibitors for the treatment of solid tumors, and their ability to pass the blood-brain barrier open new possibilities for treating central nervous system cancers. However, managing adverse effects, particularly those affecting the central nervous system, remains a critical consideration and a strategic 'working on' aspect for the near future.
Collapse
Affiliation(s)
- Giorgia Gazzaroli
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Florence, Italy
| | - Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
7
|
Deng J, Yi X, Feng Z, Peng J, Li D, Li C, Deng B, Liu S, Sahu S, Hao L. Deubiquitinating enzyme USP10 promotes osteosarcoma metastasis and epithelial-mesenchymal transition by stabilizing YAP1. Cancer Med 2023. [PMID: 37184153 PMCID: PMC10358238 DOI: 10.1002/cam4.6074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Osteosarcoma (OS) is a fatal adolescent tumor, which is susceptible to remote metastases at an early stage, and its treatment remains a major challenge. ubiquitin-specific protease 10 (USP10) is primarily located in the cytoplasm and can therefore deubiquitinate various cytoplasmic proteins. However, the expression and mechanism of USP10 in OS remain ambiguous. The aim of this study was to explore how USP10 affects Yes-associated protein1 (YAP1) to influence the metastasis and epithelial-mesenchymal transition (EMT). METHODS Western blotting, qRT-PCR, and immunohistochemical (IHC) analyses were performed to evaluate USP10 and YAP1 levels. Using wound healing and transwell tests, the roles and molecular pathways of USP10 and YAP1 ability to migrate and invade of OS were investigated, and cell morphological alterations were examined using phalloidin staining. RESULTS Our results indicated that USP10, a new type of deubiquitinating protease, is increased in OS tissues and cells contrasted with adjacent healthy tissues. Overexpression of USP10 correlated with tumor size, distant metastasis, and TNM stage, and was an independent factor of poor prognosis in OS patients. Also, USP10 expression is closely connected with the incident of OS metastasis and tumor size. Functional assays revealed that USP10 knockdown suppressed cell migrating and invading ability and inhibited the EMT of OS cells in vivo and in vitro. In addition, we showed that USP10 knockdown decreased the levels of YAP1, which is an important positive regulator of migration and invasion in many cancers. We also found a significant positive correlation between USP10 and YAP1 levels, further demonstrating that USP10-induced migration and EMT are based on YAP1 in OS cells. In a mechanistic way, USP10 stabilizes the expression of YAP1 by mediating its deubiquitination in OS cells. CONCLUSION Together, this study showed that USP10 can directly interact with YAP1 to reduce ubiquitinated YAP1, thereby stabilizing its protein levels and affecting EMT and distant metastasis in OS cells.
Collapse
Affiliation(s)
- Jianyong Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xuan Yi
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zuxi Feng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jie Peng
- Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dan Li
- Department of Oncology, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chen Li
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Binbin Deng
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shuaigang Liu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Souradeep Sahu
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Hao
- Department of Orthopedics, Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Zheng Z, Wang X, Chen D. Proteasome inhibitor MG132 enhances the sensitivity of human OSCC cells to cisplatin via a ROS/DNA damage/p53 axis. Exp Ther Med 2023; 25:224. [PMID: 37123203 PMCID: PMC10133788 DOI: 10.3892/etm.2023.11924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Cis-diamine-dichloroplatinum II (cisplatin, CDDP) is a key chemotherapeutic regimen in the treatment of oral squamous cell carcinoma (OSCC). However, the therapeutic efficacy of cisplatin in OSCC may be hampered by chemoresistance. Therefore, the development of novel combination therapy strategies to overcome the limitations of CDDP is of great importance. The proteasome inhibitor MG132 exhibits anti-cancer properties against various types of cancer. However, our knowledge of its anti-cancer effects in combination with CDDP in OSCC cells remains limited. In the current study, the synergetic effects of MG132 and CDDP were evaluated in the human CAL27 OSCC cell line. CAL27 cells were treated with CDDP alone or in combination with MG132. The results showed that MG132 significantly reduced cell viability in a dose-dependent manner. Additionally, cell viability was significantly reduced in CAL27 cells treated with 0.2 µM MG132 and 2 µM CDDP compared with cells treated with MG132 or CDDP alone. In addition, MG132 significantly enhanced the CDDP-induced generation of intracellular reactive oxygen species and DNA damage in OSCC cells. Furthermore, treatment with CDDP or MG132 alone notably inhibited colony formation and proliferation of OSCC cells. However, co-treatment of OSCC cells with MG132 and CDDP further hampered colony formation and proliferation compared with cells treated with either MG132 or CDDP alone. Finally, in cells co-treated with MG132 and CDDP, the expression of p53 was markedly elevated and the p53-mediated apoptotic pathway was further activated compared with cells treated with MG132 or CDDP alone, as shown by the enhanced cell apoptosis, Bax upregulation, and Bcl-2 downregulation. Overall, the results of the current study support the synergistic anti-cancer effects of a combination of MG132 and CDDP against OSCC, thus suggesting that the combination of MG132 and CDDP may be a promising therapeutic strategy for the management of OSCC.
Collapse
Affiliation(s)
- Zheng Zheng
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
| | - Xiang Wang
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Correspondence to: Dr Donglei Chen or Dr Xiang Wang, Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, 6 Haierxiang Road, Nantong, Jiangsu 226000, P.R. China
| | - Donglei Chen
- Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu 226000, P.R. China
- Correspondence to: Dr Donglei Chen or Dr Xiang Wang, Department of Stomatology, The First People's Hospital of Nantong, Affiliated Hospital 2 of Nantong University, 6 Haierxiang Road, Nantong, Jiangsu 226000, P.R. China
| |
Collapse
|
9
|
Bisphenol-A (BPA) Impairs Hippocampal Neurogenesis via Inhibiting Regulation of the Ubiquitin Proteasomal System. Mol Neurobiol 2023; 60:3277-3298. [PMID: 36828952 DOI: 10.1007/s12035-023-03249-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 01/24/2023] [Indexed: 02/26/2023]
Abstract
The ubiquitin-proteasome system (UPS) controls protein homeostasis to maintain cell functionality and survival. Neurogenesis relies on proteasome function, and a defective proteasome system during brain development leads to neurological disorders. An endocrine-disrupting xenoestrogen bisphenol-A (BPA) used in plastic products adversely affects human health and causes neurotoxicity. Previously, we reported that BPA reduces neural stem cells (NSCs) proliferation and differentiation, impairs myelination and mitochondrial protein import, and causes excessive mitochondrial fragmentation leading to cognitive impairments in rats. Herein, we examined the effect(s) of prenatal BPA exposure on UPS functions during NSCs proliferation and differentiation in the hippocampus. Rats were orally treated with 40 µg/kg body weight BPA during day 6 gestation to day 21 postnatal. BPA significantly reduced proteasome activity in a cellular extract of NSCs. Immunocytochemistry exhibited a significant reduction of 20S proteasome/Nestin+ and PSMB5/Nestin+ cells in NSCs culture. BPA decreased 20S/Tuj1+ and PSMB5/Tuj1+ cells, indicating disrupted UPS during neuronal differentiation. BPA reduced the expression of UPS genes, 20S, and PSMB5 protein levels and proteasome activity in the hippocampus. It significantly reduced overall protein synthesis by the loss of Nissl substances in the hippocampus. Pharmacological activation of UPS by a bioactive triterpenoid 18α-glycyrrhetinic acid (18α GA) caused increased proteasome activities, significantly increased neurosphere size and number, and enhanced NSCs proliferation in BPA exposed culture, while proteasome inhibition by MG132 further aggravates BPA-mediated effects. In silico studies demonstrated that BPA strongly binds to catalytic sites of UPS genes (PSMB5, TRIM11, Parkin, and PSMD4) which may result in UPS inactivation. These results suggest that BPA significantly reduces NSCs proliferation by impairing UPS, and UPS activation by 18α GA could suppress BPA-mediated neurotoxicity and exerts neuroprotection.
Collapse
|
10
|
Krishna-K K, Behnisch T, Sajikumar S. Modulation of the Ubiquitin-Proteasome System Restores Plasticity in Hippocampal Pyramidal Neurons of the APP/PS1 Alzheimer’s Disease-Like Mice. J Alzheimers Dis 2022; 86:1611-1616. [DOI: 10.3233/jad-215718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer’s disease (AD) is characterized by memory and cognitive deficits that in part are related to a diminished ability to activity-dependent synaptic plasticity. In AD, an attenuated long-term potentiation has been correlated with a deficit of synaptic plasticity-relevant proteins and protein turnover. The ubiquitin-proteasome system (UPS) critically regulates the protein turnover and contributes to dynamic changes of the protein milieu within synapses. In AD, UPS aberration has been implicated in inadequate proteostasis and synaptic malfunction. However, here we show that the inhibition of proteasome-mediated protein degradation by MG132 or lactacystin restored an impaired activity-dependent synaptic plasticity in an AD-like mouse model. In this whole-cell voltage-clamp study, we provided evidence that an amelioration of long-term plasticity by modulating UPS activity in pyramidal neurons.
Collapse
Affiliation(s)
- Kumar Krishna-K
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Neurobiology Programme, Life Sciences Institute, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|