1
|
Ravichandran B, Sanniyasi E, Govindasamy Kuppusamy S, Perumal P. Onco-therapeutic Effect of Novel Triterpenoid Compound Oleanolic Acid Isolated and Characterized from the Methanolic Extract of Coldenia procumbens (Linn.). Appl Biochem Biotechnol 2024:10.1007/s12010-024-04959-7. [PMID: 38683454 DOI: 10.1007/s12010-024-04959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
India is considered a hub for a wide range of phytochemicals due to its rich biodiversity, which indeed flourished with many folk medicines and treatments. Phytochemicals are secondary metabolites synthesized in plants to protect themselves from deteriorating environmental stress and defense against pathogens. In the present study, we aimed to explore the strong anticancer potential of the bioactive compound present in the leaf extract of Coldenia procumbens (L.). The bioactive compound oleanolic acid was first time reported in the plant and was successfully isolated, characterized with various spectroscopic analyses. The in vitro study results explored that oleanolic acid has shown a potent cytotoxic effect against human hepatocellular carcinoma cell lines with a low IC50 value (40.66μg/mL) and induced apoptotic cell death. Overall, the present findings clearly demonstrated that the natural triterpenoid compound oleanolic acid isolated from C. procumbens showed a potent cytotoxic effect against HepG2 cells and explored the strong anticancer potential against liver cancer.
Collapse
Affiliation(s)
| | - Elumalai Sanniyasi
- Department of Botany, Tamil Nadu Open University, Chennai, 600015, India.
- Department of Biotechnology, University of Madras (Guindy Campus), Chennai, 600025, India.
| | | | - Parthasarathi Perumal
- Department of Plant Biology and Plant Biotechnology, Presidency College (Autonomous), Chennai, 600005, India
| |
Collapse
|
2
|
Alruwad MI, Salah El Dine R, Gendy AM, Sabry MM, El Hefnawy HM. Exploring the Biological and Phytochemical Potential of Jordan's Flora: A Review and Update of Eight Selected Genera from Mediterranean Region. Molecules 2024; 29:1160. [PMID: 38474670 DOI: 10.3390/molecules29051160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Jordan's flora is known for its rich diversity, with a grand sum of 2978 plant species that span 142 families and 868 genera across four different zones. Eight genera belonging to four different plant families have been recognized for their potential natural medicinal properties within the Mediterranean region. These genera include Chrysanthemum L., Onopordum Vaill. Ex. L., Phagnalon Cass., and Senecio L. from the Asteraceae family, in addition to Clematis L. and Ranunculus L. from the Ranunculaceae family, Anchusa L. from the Boraginaceae family, and Eryngium L. from the Apiaceae family. The selected genera show a wide variety of secondary metabolites with encouraging pharmacological characteristics including antioxidant, antibacterial, cytotoxic, anti-inflammatory, antidiabetic, anti-ulcer, and neuroprotective actions. Further research on these genera and their extracts will potentially result in the formulation of novel and potent natural pharmaceuticals. Overall, Jordan's rich flora provides a valuable resource for exploring and discovering new plant-based medicines.
Collapse
Affiliation(s)
- Manal I Alruwad
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Riham Salah El Dine
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Abdallah M Gendy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt
| | - Manal M Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Hala M El Hefnawy
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| |
Collapse
|
3
|
Yao Z, Chen L, Hu M, Meng F, Chen M, Wang G. The discovery of a new potent FXR agonist based on natural product screening. Bioorg Chem 2024; 143:106979. [PMID: 37995646 DOI: 10.1016/j.bioorg.2023.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
FXR agonistic activity screening was conducted based on natural product resources containing 38 structurally diverse sesquiterpenoids isolated from Xylopia vielana. Among them, 34 undescribed sesquiterpenoids with 5 different skeleton types were first characterized by HRESIMS, NMR data, ECD calculations and X-ray crystallographic analysis. High-content screening for FXR agonistic activity of these compounds demonstrated that 13 compounds could activate FXR. Then molecular docking results suggested that hydrogen bonding and hydrophobic interactions might contribute to the main interaction of active compounds with FXR. The preliminary structure-activity relationships (SARs) of those isolates were also discussed. The most potent compound 27 significantly elevated the transcriptional activity of the FXR target gene BSEP promoter (EC50 = 14.26 μM) by a dual-luciferase reporter assay. Western blotting indicated that compound 27 activated the FXR-associated pathway, thereby upregulating SHP and BSEP expression, and downregulating CYP7A1 and NTCP expression. We further revealed that FXR was the target protein of compound 27 through diverse target validation methods, including CETSA, SIP, and DARTS under the intervention of temperature, organic reagents and protease. Pharmacological in vivo experiments showed that compound 27 effectively ameliorated α-naphthyl isothiocyanate (ANIT)-induced cholestasis in mice, as evidenced by the ameliorative histopathology of the liver and the decrease in biochemical markers: alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), total bilirubin (TBIL), direct bilirubin (DBIL), and total bile acid (TBA). This work showed a practical strategy for the discovery of new FXR agonists from natural products and provided potential insights for sesquiterpenoids as FXR agonist lead compounds.
Collapse
Affiliation(s)
- Zongwen Yao
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Lin Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Min Hu
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Fancheng Meng
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Min Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| | - Guowei Wang
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
4
|
Lazarova I, Zengin G, Piatti D, Uba AI, Sagratini G, Caprioli G, Emre G, Ponniya SKM, Rengasamy KR, Paradis NJ, Koyuncu I, Şeker F, Wu C, Nilofar, Flores GA, Cusumano G, Angelini P, Venanzoni R. Appraisals on the chemical characterization and biological potentials of Ranunculus constantinopolitanus extracts using chromatographic, computational, and molecular network approaches. Food Chem Toxicol 2023; 181:114064. [PMID: 37793470 DOI: 10.1016/j.fct.2023.114064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
In this context, phytochemicals were extracted from Ranunculus constantinopolitanus using ethyl acetate (EA), ethanol, ethanol/water (70%), and water solvent. The analysis encompassed quantification of total phenolic and flavonoid content using spectrophotometric assays, chemical profiling via high performance liquid chromatography-mass spectrometry/mass spectrometry (HPLC-MS/MS) for the extracts, and assessment of antioxidant activity via 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), Cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), metal chelating (MCA), and phosphomolybdenum (PBD) assays. Moreover, antimicrobial activity was assessed against four different bacterial strains, as well as various yeasts. Enzyme inhibitory activities were evaluated against five types of enzymes. Additionally, the extracts were examined for their anticancer and protective effects on several cancer cell lines and the human normal cell line. All of the extracts exhibited significant levels of ferulic acid, kaempferol, and caffeic acid. All tested extracts demonstrated antimicrobial activity, with Escherichia coli and Pseudomonas aeruginosa being most sensitive to EA and ethanol extracts. Molecular docking studies revealed that kaempferol-3-O-glucoside strong interactions with AChE, BChE and tyrosinase. In addition, network pharmacology showed an association between gastric cancer and kaempferol-3-O-glucoside. Based on the results, R. constantinopolitanus can be a potential reservoir of bioactive compounds for future bioproduct innovation and pharmaceutical industries.
Collapse
Affiliation(s)
- Irina Lazarova
- Department of Chemistry, Faculty of Pharmacy, Medical University-Sofia, 2, Dunav Str., 1000 Sofia, Bulgaria
| | - Gokhan Zengin
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey.
| | - Diletta Piatti
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Abdullahi Ibrahim Uba
- Department of Molecular Biology and Genetics, Istanbul AREL University, Istanbul 34537, Turkey
| | - Gianni Sagratini
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Giovanni Caprioli
- CHemistry Interdisciplinary Project (CHip), School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy
| | - Gizem Emre
- Department of Pharmaceutical Botany, Pharmacy Faculty, Marmara University, Istanbul, Turkey
| | - Sathish Kumar M Ponniya
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | - Kannan Rr Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, India
| | | | - Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa 63290, Turkey
| | - Fatma Şeker
- Department of Biology, Science Arts Faculty, Harran University, Sanliurfa, Turkey
| | - Chun Wu
- College of Science and Mathematics, Rowan University, Glassboro, NJ 08028, USA
| | - Nilofar
- Physiology and Biochemistry Research Laboratory, Department of Biology, Science Faculty, Selcuk University, Konya, Turkey; Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Giancarlo Angeles Flores
- Department of Pharmacy, Botanic Garden "Giardino dei Semplici", "Gabriele d'Annunzio" University, 66100 Chieti, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06122 Perugia (PG), Italy
| |
Collapse
|
5
|
Wijewardhana U, Jayasinghe M, Wijesekara I, Ranaweera KKDS. Zingiber officinale, Phyllanthus emblica, Cinnamomum verum, and Curcuma longa to Prevent Type 2 Diabetes: An Integrative Review. Curr Diabetes Rev 2023; 19:e241122211183. [PMID: 36424773 DOI: 10.2174/1573399819666221124104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/11/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
Abstract
Diabetes mellitus has become a global pandemic progressively rising and affecting almost every household in all world regions. Diet is a significant root cause of type II diabetes; thus, the significance of dietary interventions in preventing and managing the disease cannot be neglected. Lowering the glycemic impact of diet is an alternative way of managing type II diabetes while improving insulin sensitivity. Medicinal plants are rich in therapeutic phytochemicals which possess hypoglycemic properties. Therefore, it could be speculated that the glycemic impact of diet can be reduced by adding hypoglycemic plant ingredients without altering the sensory properties of food. The main aim of this review is to discuss dietary interventions to manage diabetes and summarize available information on the hypoglycemic properties of four prime herbs of Asian origin. This article collected, tabulated, and summarized groundbreaking reveals from promising studies. This integrative review provides information on the hypoglycemic properties of ginger, Indian gooseberry, cinnamon, and turmeric and discusses the possibility of those herbs reducing the glycemic impact of a diet once incorporated. Further research should be done regarding the incorporation of these herbs successfully into a regular diet.
Collapse
Affiliation(s)
- Uththara Wijewardhana
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Madhura Jayasinghe
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Isuru Wijesekara
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - K K D S Ranaweera
- Department of Food Science and Technology, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| |
Collapse
|
6
|
Hu Y, Liu X, Wu X, Zhang Z, Wu D, Chen C, Su W, Zhang L, Li J, Wang HMD. Several natural phytochemicals from Chinese traditional fermented food-pickled Raphanus sativus L.: Purification and characterization. Food Chem X 2022; 15:100390. [PMID: 35874426 PMCID: PMC9303827 DOI: 10.1016/j.fochx.2022.100390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/29/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022] Open
Abstract
β-Sitosterol, β-sitosterol-3-o-glucose glycosides, α-linolenic acid, 1-monopalmitin and chaenomic acid A were identified from 5-year-old pickled radish. Production of the merad product 5-hydroxymethylfurfural in fresh white radish after salting and fermentation. β-Sitosterol, β-sitosterol-3-O-glucose glycosides have good affinity with antioxidant enzymes.
In this study, we aimed to isolate and identify the bioactive compounds from 5-year pickled radish. The pickled radish was extracted with methanol or ethyl acetate. Sephadex LH-20, normal phase and reverse phase silica gel column chromatography were used for separation and purification, combined with thin layer chromatography (TLC), high performance liquid chromatography (HPLC), electrospray mass spectrometry (ESI-MS), nuclear magnetic resonance spectroscopy (NMR) technology for structural identification. The results showed that 6 compounds were separated and purified from methanol and ethyl acetate extracts of 5-year-old pickled radish. The structures were identified as 5-hydroxymethylfurfural, β-sitosterol, β-sitosterol-3-O-glucose glycosides, α-linolenic acid, 1-monopalmitin and chaenomic acid A. Using molecular docking, it was determined that β-sitosterol and its derivative β-sitosterol-3-O-glucose glycosides have high affinity for five antioxidant enzymes, and there were multiple hydrogen bonds between them. These results indicated that pickled radishes might be used as an important source of natural chemical substances.
Collapse
|
7
|
Goo YK. Therapeutic Potential of Ranunculus Species (Ranunculaceae): A Literature Review on Traditional Medicinal Herbs. PLANTS 2022; 11:plants11121599. [PMID: 35736749 PMCID: PMC9227133 DOI: 10.3390/plants11121599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
The genus Ranunculus includes approximately 600 species and is distributed worldwide. To date, several researchers have investigated the chemical and biological activities of Ranunculus species, and my research team has found them to have antimalarial effects. This review is based on the available information on the traditional uses and pharmacological studies of Ranunculus species. The present paper covers online literature, particularly from 2010 to 2021, and books on the ethnopharmacology and botany of Ranunculus species. Previous studies on the biological activity of crude or purified compounds from Ranunculus species, including R. sceleratus Linn., R. japonicus Thunb., R. muricatus Linn., R. ternatus Thunb., R. arvensis Linn., R. diffusus DC., R. sardous Crantz, R. ficaria Linn., R. hyperboreus Rotlb., and R. pedatus Waldst. & Kit., have provided new insights into their activities, such as antibacterial and antiprotozoal effects as well as antioxidant, immunomodulatory, and anticarcinogenic properties. In addition, the anti-inflammatory and analgesic effects of plants used in traditional medicine applications have been confirmed. Therefore, there is a need for more diverse studies on the chemical and pharmacological activities of highly purified molecules from Ranunculus species extracts to understand the mechanisms underlying their activities and identify novel drug candidates.
Collapse
Affiliation(s)
- Youn-Kyoung Goo
- Department of Parasitology and Tropical Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
8
|
Ding Z, Ji S, Zhao J, Zheng D. Combination of theoretical calculation and experiment to study the excited state proton transfer behavior of trifluoroacetamidoanthraquinone with different substitution positions. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132084] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Romano B, Lucariello G, Capasso R. Topical Collection "Pharmacology of Medicinal Plants". Biomolecules 2021; 11:biom11010101. [PMID: 33466709 PMCID: PMC7828774 DOI: 10.3390/biom11010101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Barbara Romano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy; (B.R.); (G.L.)
| | - Giuseppe Lucariello
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80138 Naples, Italy; (B.R.); (G.L.)
| | - Raffaele Capasso
- Department of Agricultural Science, University of Naples Federico II, 80138 Naples, Italy
- Correspondence:
| |
Collapse
|