1
|
Elisha C, Bhagwat P, Pillai S. Emerging production techniques and potential health promoting properties of plant and animal protein-derived bioactive peptides. Crit Rev Food Sci Nutr 2024:1-30. [PMID: 39206881 DOI: 10.1080/10408398.2024.2396067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Bioactive peptides (BPs) are short amino acid sequences that that are known to exhibit physiological characteristics such as antioxidant, antimicrobial, antihypertensive and antidiabetic properties, suggesting that they could be exploited as functional foods in the nutraceutical industry. These BPs can be derived from a variety of food sources, including milk, meat, marine, and plant proteins. In the past decade, various methods including in silico, in vitro, and in vivo techniques have been explored to unravel underlying mechanisms of BPs. To forecast interactions between peptides and their targets, in silico methods such as BIOPEP, molecular docking and Quantitative Structure-Activity Relationship modeling have been employed. Additionally, in vitro research has examined how BPs affect enzyme activities, protein expressions, and cell cultures. In vivo studies on the contrary have appraised the impact of BPs on animal models and human subjects. Hence, in the light of recent literature, this review examines the multifaceted aspects of BPs production from milk, meat, marine, and plant proteins and their potential bioactivities. We envisage that the various concepts discussed will contribute to a better understanding of the food derived BP production, which could pave a way for their potential applications in the nutraceutical industry.
Collapse
Affiliation(s)
- Cherise Elisha
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban, South Africa
| |
Collapse
|
2
|
Lopes D, Aveiro SS, Cruz S, Cartaxana P, Domingues P. Proteomic analysis of the mucus of the photosynthetic sea slug Elysia crispata. J Proteomics 2024; 294:105087. [PMID: 38237665 DOI: 10.1016/j.jprot.2024.105087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Elysia crispata is a tropical sea slug that can retain intracellular functional chloroplasts from its algae prey, a mechanism termed kleptoplasty. This sea slug, like other gastropods, secretes mucus, a viscous secretion with multiple functions, including lubrication, protection, and locomotion. This study presents the first comprehensive analysis of the mucus proteome of the sea slug E. crispata using gel electrophoresis and HPLC-MS/MS. We identified 306 proteins in the mucus secretions of this animal, despite the limited entries for E. crispata in the Uniprot database. The functional annotation of the mucus proteome using Gene Ontology identified proteins involved in different functions such as hydrolase activity (molecular function), carbohydrate-derived metabolic processes (biological processes) and cytoskeletal organization (cell component). Moreover, a high proportion of proteins with enzymatic activity in the mucus of E. crispata suggests potential biotechnological applications including antimicrobial and antitumor activities. Putative antimicrobial properties are reinforced by the high abundance of hydrolases. This study also identified proteins common in mucus samples from various species, supporting a common mechanism of mucus in protecting cells and tissues while facilitating animal movement. SIGNIFICANCE: Marine species are increasingly drawing the interest of researchers for their role in discovering new bioactive compounds. The study "Proteomic Analysis of the Mucus of the Photosynthetic Sea Slug Elysia crispata" is a pioneering effort that uncovers the complex protein content in this fascinating sea slug's mucus. This detailed proteomic study has revealed proteins with potential use in biotechnology, particularly for antimicrobial and antitumor purposes. This research is a first step in exploring the possibilities within the mucus of Elysia crispata, suggesting the potential for new drug discoveries. These findings could be crucial in developing treatments for severe diseases, especially those caused by multidrug-resistant bacteria, and may lead to significant advances in medical research.
Collapse
Affiliation(s)
- Diana Lopes
- ECOMARE - Laboratory for Innovation and Sustainability of Marine Biological Resources, CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Susana S Aveiro
- GreenCoLab - Associação Oceano Verde, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Sónia Cruz
- ECOMARE, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cartaxana
- ECOMARE, CESAM, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry of the Network of Chemistry and Technology, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
3
|
Naeem M, Malik MI, Umar T, Ashraf S, Ahmad A. A Comprehensive Review About Bioactive Peptides: Sources to Future Perspective. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10465-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
4
|
Costa I, Lima M, Medeiros A, Bezerra L, Santos P, Serquiz A, Lima M, Oliveira G, Santos E, Maciel B, Monteiro N, Morais AH. An Insulin Receptor-Binding Multifunctional Protein from Tamarindus indica L. Presents a Hypoglycemic Effect in a Diet-Induced Type 2 Diabetes-Preclinical Study. Foods 2022; 11:foods11152207. [PMID: 35892791 PMCID: PMC9332146 DOI: 10.3390/foods11152207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/21/2022] [Indexed: 12/11/2022] Open
Abstract
The objectives of this study were to evaluate the hypoglycemic effect of the trypsin inhibitor isolated from tamarind seeds (TTI) in an experimental model of T2DM and the in silico interaction between the conformational models of TTI 56/287 and the insulin receptor (IR). After inducing T2DM, 15 male Wistar rats were randomly allocated in three groups (n = 5): 1—T2DM group without treatment; 2—T2DM group treated with adequate diet; and 3—T2DM treated with TTI (25 mg/kg), for 10 days. Insulinemia and fasting glucose were analyzed, and the HOMA-IR and HOMA-β were calculated. The group of animals treated with TTI presented both lower fasting glucose concentrations (p = 0.0031) and lower HOMA-IR indexes (p = 0.0432), along with higher HOMA-β indexes (p = 0.0052), than the animals in the other groups. The in silico analyses showed that there was an interaction between TTIp 56/287 and IR with interaction potential energy (IPE) of −1591.54 kJ mol−1 (±234.90), being lower than that presented by insulin and IR: −894.98 kJ mol−1 (±32.16). In addition, the presence of amino acids, type of binding and place of interaction other than insulin were identified. This study revealed the hypoglycemic effect of a bioactive molecule of protein origin from Tamarind seeds in a preclinical model of T2DM. Furthermore, the in silico analysis allowed the prediction of its binding in the IR, raising a new perspective for explaining TTI’s action on the glycemic response.
Collapse
Affiliation(s)
- Izael Costa
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
| | - Mayara Lima
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
| | - Amanda Medeiros
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
| | - Lucas Bezerra
- Chemistry Postgraduate Program, Science Center, Federal University of Ceará, Fortaleza 60020-903, Brazil; (L.B.); (N.M.)
| | - Paula Santos
- Federal Institute of Education, Science and Technology of Rio Grande do Norte, Macau 59500-000, Brazil;
| | - Alexandre Serquiz
- Nutrition Course, University Center of Rio Grande do Norte, Natal 59014-545, Brazil;
| | - Maíra Lima
- Veterinary Medicine Course, Potiguar University, Natal 59056-000, Brazil;
| | - Gerciane Oliveira
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (G.O.); (B.M.)
| | - Elizeu Santos
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
- Biochemistry Department, Biosciences Center, Federal University of Rio Grande, Natal 59075-000, Brazil
- Tropical Medicine Institute, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil
| | - Bruna Maciel
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (G.O.); (B.M.)
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil
| | - Norberto Monteiro
- Chemistry Postgraduate Program, Science Center, Federal University of Ceará, Fortaleza 60020-903, Brazil; (L.B.); (N.M.)
- Analytical Chemistry and Physical Chemistry Department, Science Center, Federal University of Ceará, Fortaleza 60020-903, Brazil
| | - Ana Heloneida Morais
- Biochemistry and Molecular Biology Postgraduate Program, Biosciences Center, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (I.C.); (M.L.); (A.M.); (E.S.)
- Nutrition Postgraduate Program, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil; (G.O.); (B.M.)
- Nutrition Department, Center for Health Sciences, Federal University of Rio Grande do Norte, Natal 59075-000, Brazil
- Correspondence: or ; Tel.: +55-8499-106-1887
| |
Collapse
|
5
|
Tacias-Pascacio VG, Castañeda-Valbuena D, Morellon-Sterling R, Tavano O, Berenguer-Murcia Á, Vela-Gutiérrez G, Rather IA, Fernandez-Lafuente R. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. Int J Biol Macromol 2021; 184:415-428. [PMID: 34157329 DOI: 10.1016/j.ijbiomac.2021.06.076] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022]
Abstract
Papain is a cysteine endopeptidase of vegetal origin (papaya (Carica papaya L.) with diverse applications in food technology. In this review we have focused our attention on its application in the production of bio-peptides by hydrolysis of proteins from fish residues. This way, a residual material, that can become a contaminant if dumped without control, is converted into highly interesting products. The main bioactivity of the produced peptides is their antioxidant activity, followed by their nutritional and functional activities, but peptides with many other bioactivities have been produced. Thera are also examples of production of hydrolysates with several bioactivities. The enzyme may be used alone, or in combination with other enzymes to increase the degree of hydrolysis.
Collapse
Affiliation(s)
- Veymar G Tacias-Pascacio
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico; Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico.
| | - Daniel Castañeda-Valbuena
- Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Carretera Panamericana Km. 1080, 29050 Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Olga Tavano
- Faculty of Nutrition, Alfenas Federal Univ., 700 Gabriel Monteiro da Silva St, Alfenas, MG 37130-000, Brazil
| | - Ángel Berenguer-Murcia
- Departamento de Química Inorgánica e Instituto Universitario de Materiales, Universidad de Alicante, Alicante, Spain
| | - Gilber Vela-Gutiérrez
- Facultad de Ciencias de la Nutrición y Alimentos, Universidad de Ciencias y Artes de Chiapas, Lib. Norte Pte. 1150, 29039 Tuxtla Gutiérrez, Chiapas, Mexico
| | - Irfan A Rather
- Center of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|