1
|
Yi Y, Pyun SH, Kim CY, Yun G, Kang E, Heo S, Ullah I, Lee SK. Eye Drop with Fas-Blocking Peptide Attenuates Age-Related Macular Degeneration. Cells 2024; 13:548. [PMID: 38534392 DOI: 10.3390/cells13060548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024] Open
Abstract
Age-related macular degeneration (AMD), characterized by macular retinal degeneration, poses a significant health concern due to the lack of effective treatments for prevalent dry AMD. The progression of AMD is closely linked to reactive oxygen species and Fas signaling, emphasizing the need for targeted interventions. In this study, we utilized a NaIO3-induced retinal degeneration mouse model to assess the efficacy of Fas-blocking peptide (FBP). Intravitreal administration of FBP successfully suppressed Fas-mediated inflammation and apoptosis, effectively arresting AMD progression in mice. We developed a 6R-conjugated FBP (6R-FBP) for eye drop administration. 6R-FBP, administered as an eye drop, reached the retinal region, attenuating degeneration by modulating the expression of inflammatory cytokines and blocking Fas-mediated apoptosis in rodent and rabbit NaIO3-induced retinal degeneration models to address practical concerns. Intravitreal FBP and 6R-FBP eye drops effectively reduced retinal degeneration and improved retinal thickness in rodent and rabbit models. This study highlights the therapeutic potential of FBP, particularly 6R-FBP as an eye drop, in inhibiting Fas-mediated cell signaling and protecting against retinal cell death and inflammation in dry AMD. Future investigations should explore the translational prospects of this approach in primates with eye structures comparable to those of humans.
Collapse
Affiliation(s)
- Yujong Yi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Seon-Hong Pyun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Chae-Yeon Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Gyeongju Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunhwa Kang
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Seoyoun Heo
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| | - Irfan Ullah
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Choi W, Nensel AK, Droho S, Fattah MA, Mokashi-Punekar S, Swygart DI, Burton ST, Schwartz GW, Lavine JA, Gianneschi NC. Thrombospondin-1 proteomimetic polymers exhibit anti-angiogenic activity in a neovascular age-related macular degeneration mouse model. SCIENCE ADVANCES 2023; 9:eadi8534. [PMID: 37831763 PMCID: PMC10575579 DOI: 10.1126/sciadv.adi8534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/08/2023] [Indexed: 10/15/2023]
Abstract
Neovascular age-related macular degeneration (nAMD) is the leading cause of blindness in the developed world. Current therapy includes monthly intraocular injections of anti-VEGF antibodies, which are ineffective in up to one third of patients. Thrombospondin-1 (TSP1) inhibits angiogenesis via CD36 binding, and its down-regulated expression is negatively associated with the onset of nAMD. Here, we describe TSP1 mimetic protein-like polymers (TSP1 PLPs). TSP1 PLPs bind CD36 with high affinity, resist degradation, show prolonged intraocular half-lives (13.1 hours), have no toxicity at relevant concentrations in vivo (40 μM), and are more efficacious in ex vivo choroidal sprouting assays compared to the peptide sequence and Eylea (aflibercept), the current standard of care anti-VEGF treatment. Furthermore, PLPs exhibit superior in vivo efficacy in a mouse model for nAMD compared to control PLPs consisting of scrambled peptide sequences, using fluorescein angiography and immunofluorescence. Since TSP-1 inhibits angiogenesis by VEGF-dependent and independent mechanisms, TSP1 PLPs are a potential therapeutic for patients with anti-VEGF treatment-resistant nAMD.
Collapse
Affiliation(s)
- Wonmin Choi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Ashley K. Nensel
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Mara A. Fattah
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Soumitra Mokashi-Punekar
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - David I. Swygart
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg School of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Spencer T. Burton
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
| | - Greg W. Schwartz
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neuroscience, Weinberg School of Arts and Sciences, Northwestern University, Chicago, IL, USA
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nathan C. Gianneschi
- Department of Chemistry, International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Biomedical Engineering, Pharmacology, Simpson Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL, USA
| |
Collapse
|
3
|
Toffoletto N, Saramago B, Serro AP, Chauhan A. A Physiology-Based Mathematical Model to Understand Drug Delivery from Contact Lenses to the Back of the Eye. Pharm Res 2023; 40:1939-1951. [PMID: 37498499 PMCID: PMC10447275 DOI: 10.1007/s11095-023-03560-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/02/2023] [Indexed: 07/28/2023]
Abstract
OBJECTIVE Therapeutic contact lenses, able to store drug and deliver it to the eye surface in a sustained fashion, gained interest as an effective and patient-friendly alternative to eye drops. Recent animal studies also demonstrated the presence of therapeutic drug levels in the back of the eye after wearing drug-loaded contact lenses, thus opening the possibility of treating the posterior segment without need of invasive intraocular injections. The drug pathways from contact lenses to the back of the eye require further investigation. METHODS A mechanistic mathematical model was developed to evaluate the drug concentration over time in the tears, sclera and choroid, retina, aqueous humor and vitreous humor after the application of a therapeutic contact lens. The main drug transport mechanisms of the eye and the barrier properties of the different tissues were included in the model. Validation was performed by comparison with experimental data in literature. RESULTS The model predictions of drug concentration over time reflected the experimental data both in the anterior and posterior segment of the eye. The model can differentiate between contributions to transport from different pathways. CONCLUSIONS The model constitutes a first step towards the possibility of predicting the ocular drug distribution and the treatment efficacy in the early stage of contact lens development, and it may help reduce both the need for in vivo tests (with ethical and economic advantages) and the gap between the lens design and clinical application. It also allows for an improved understanding of drug transport in the eye.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal.
| | - Benilde Saramago
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511, Caparica, Portugal
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO, 80401, USA
| |
Collapse
|
4
|
Rohira H, Arora A, Kaur P, Chugh A. Peptide cargo administration: current state and applications. Appl Microbiol Biotechnol 2023; 107:3153-3181. [PMID: 37052636 PMCID: PMC10099029 DOI: 10.1007/s00253-023-12512-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023]
Abstract
Effective delivery of drug molecules to the target site is a challenging task. In the last decade, several innovations in the drug delivery system (DDS) have tremendously improved the therapeutic efficacy of drug molecules. Among various DDS, cell-penetrating peptides (CPPs) based DDS have gathered notable attention owing to their safety, efficacy, selectivity, specificity, and ease of synthesis. CPPs are emerging as an efficient and effective pharmaceutical nanocarriers-based platforms for successful management of various important human health disorders. Failure of several current chemotherapeutic strategies is attributed to low solubility, reduced bioavailability, and off-target delivery of several anti-cancer drugs. Similarly, development of therapeutics for vision-threatening disorders is challenged by the anatomical as well as physiological complexity of the eye. Such therapeutic challenges in cancer and ocular disease management can be overcome by developing cell-penetrating peptide (CPP) based peptide drug conjugates (PDCs). CPPs can be used to deliver various types of cargo molecules including nucleic acids, small molecules, and peptides/proteinaceous agents. In this review, we have briefly introduced CPPs and the linker strategies employed for the development of PDCs. Furthermore, recent studies employing CPP-based PDCs for cancer and ocular disease management have been discussed in detail highlighting their significance over conventional DDS. Later sections of the review are focused on the current status of clinical trials and future implications of CPP-based PDCs in vaccine development. KEY POINTS: • Cell-penetrating peptides (CPPs) can deliver a variety of cargo macromolecules via covalent and non-covalent conjugation. • CPP-based peptide drug conjugates (PDCs) can overcome drawbacks of conventional drug delivery methods such as biocompatibility, solubility, stability, and specificity. • Various PDCs are in clinical trial phase for cancer and ocular therapeutics.
Collapse
Affiliation(s)
- Harsha Rohira
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
- Genohelex Care Pvt. Ltd, ASPIRE BioNEST, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Aditi Arora
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Prasanjeet Kaur
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Archana Chugh
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi, 110016, India.
| |
Collapse
|
5
|
Synthesis and Evaluation of the Antimicrobial Activity of Cationic Amphiphiles Based on Bivalent Diethylenetriamine Derivatives. Pharm Chem J 2023. [DOI: 10.1007/s11094-023-02834-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
6
|
Attia SA, MacKay JA. Protein and polypeptide mediated delivery to the eye. Adv Drug Deliv Rev 2022; 188:114441. [PMID: 35817213 PMCID: PMC10049092 DOI: 10.1016/j.addr.2022.114441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022]
Abstract
Hybrid or recombinant protein-polymers, peptide-based biomaterials, and antibody-targeted therapeutics are widely explored for various ocular conditions and vision correction. They have been noted for their potential biocompatibility, potency, adaptability, and opportunities for sustained drug delivery. Unique to peptide and protein therapeutics, their production by cellular translation allows their precise modification through genetic engineering. To a greater extent than drug delivery to other systems, delivery to the eye can benefit from the combination of locally-targeted administration and protein-based specificity. Consequently, a range of delivery platforms and administration methods have been exploited to address the ocular delivery of peptide and protein biomaterials. This review discusses a sample of preclinical and clinical opportunities for peptide-based drug delivery to the eye.
Collapse
Affiliation(s)
- Sara Aly Attia
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - J Andrew MacKay
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA; Department of Ophthalmology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
7
|
Calpains as mechanistic drivers and therapeutic targets for ocular disease. Trends Mol Med 2022; 28:644-661. [PMID: 35641420 PMCID: PMC9345745 DOI: 10.1016/j.molmed.2022.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/03/2022] [Accepted: 05/09/2022] [Indexed: 11/18/2022]
Abstract
Ophthalmic neurodegenerative diseases encompass a wide array of molecular pathologies unified by calpain dysregulation. Calpains are calcium-dependent proteases that perpetuate cellular death and inflammation when hyperactivated. Calpain inhibition trials in other organs have faced pharmacological challenges, but the eye offers many advantages for the development and testing of targeted molecular therapeutics, including small molecules, peptides, engineered proteins, drug implants, and gene-based therapies. This review highlights structural mechanisms underlying calpain activation, distinct cellular expression patterns, and in vivo models that link calpain hyperactivity to human retinal and developmental disease. Optimizing therapeutic approaches for calpain-mediated eye diseases can help accelerate clinically feasible strategies for treating calpain dysregulation in other diseased tissues.
Collapse
|
8
|
|
9
|
Sun YJ, Lin CH, Wu MR, Lee SH, Yang J, Kunchur CR, Mujica EM, Chiang B, Jung YS, Wang S, Mahajan VB. An intravitreal implant injection method for sustained drug delivery into mouse eyes. CELL REPORTS METHODS 2021; 1:100125. [PMID: 35128514 PMCID: PMC8813043 DOI: 10.1016/j.crmeth.2021.100125] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/15/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022]
Abstract
Using small molecule drugs to treat eye diseases carries benefits of specificity, scalability, and transportability, but their efficacy is significantly limited by a fast intraocular clearance rate. Ocular drug implants (ODIs) present a compelling means for the slow and sustained release of small molecule drugs inside the eye. However, methods are needed to inject small molecule ODIs into animals with small eyes, such as mice, which are the primary genetic models for most human ocular diseases. Consequently, it has not been possible to fully investigate efficacy and ocular pharmacokinetics of ODIs. Here, we present a robust, cost-effective, and minimally invasive method called "mouse implant intravitreal injection" (MI3) to deliver ODIs into mouse eyes. This method will expand ODI research to cover the breadth of human eye diseases modeled in mice.
Collapse
Affiliation(s)
- Young Joo Sun
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Cheng-Hui Lin
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Man-Ru Wu
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Jing Yang
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Caitlin R. Kunchur
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Elena M. Mujica
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
| | - Bryce Chiang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Youn Soo Jung
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Department of Epidemiology and Clinical Research, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sui Wang
- Byers Eye Institute, Department of Ophthalmology, Stanford University, Stanford, CA 94304, USA
| | - Vinit B. Mahajan
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
10
|
Shukla SP, Cho KB, Rustagi V, Gao X, Fu X, Zhang SX, Guo B, Udugamasooriya DG. "Molecular Masks" for ACE2 to Effectively and Safely Block SARS-CoV-2 Virus Entry. Int J Mol Sci 2021; 22:ijms22168963. [PMID: 34445669 PMCID: PMC8396575 DOI: 10.3390/ijms22168963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/14/2021] [Accepted: 08/17/2021] [Indexed: 01/14/2023] Open
Abstract
Coronavirus Disease 2019 (COVID-19) remains a global health crisis, despite the development and success of vaccines in certain countries. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes COVID-19, uses its spike protein to bind to the human cell surface receptor angiotensin-converting enzyme 2 (ACE2), which allows the virus to enter the human body. Using our unique cell screening technology, we identified two ACE2-binding peptoid compounds and developed dimeric derivatives (ACE2P1D1 and ACE2P2D1) that effectively blocked spike protein-ACE2 interaction, resulting in the inhibition of SARS-CoV-2 pseudovirus entry into human cells. ACE2P1D1 and ACE2P2D1 also blocked infection by a D614G mutant pseudovirus. More importantly, these compounds do not decrease ACE2 expression nor its enzyme activity (which is important in normal blood pressure regulation), suggesting safe applicability in humans
Collapse
Affiliation(s)
- Satya Prakash Shukla
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Kwang Bog Cho
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Vineeta Rustagi
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Xiang Gao
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
| | - Xinping Fu
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5037, USA; (X.F.); (S.X.Z.)
| | - Shaun Xiaoliu Zhang
- Department of Biology and Biochemistry, University of Houston, 3455 Cullen Blvd, Houston, TX 77204-5037, USA; (X.F.); (S.X.Z.)
| | - Bin Guo
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
- Correspondence: (B.G.); (D.G.U.)
| | - D. Gomika Udugamasooriya
- Department of Pharmacological & Pharmaceutical Sciences, University of Houston, 4849 Calhoun Rd, Houston, TX 77204-5037, USA; (S.P.S.); (K.B.C.); (V.R.); (X.G.)
- MD Anderson Cancer Center, Department of Cancer Systems Imaging, 1881 East Road, Houston, TX 77030-4009, USA
- Correspondence: (B.G.); (D.G.U.)
| |
Collapse
|