1
|
Chen Q, Li X, Yang Y, Ni J, Chen J. Combined Analysis of Human and Experimental Rat Samples Identified Biomarkers for Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04512-x. [PMID: 39325100 DOI: 10.1007/s12035-024-04512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The genetic transcription profile and underlying molecular mechanisms of ischemic stroke (IS) remain elusive. To address this issue, four mRNA and one miRNA expression profile of rats with middle cerebral artery occlusion (MCAO) were acquired from the Gene Expression Omnibus (GEO) database. A total of 780 differentially expressed genes (DEGs) and 56 miRNAs (DEMs) were screened. Gene set and functional enrichment analysis revealed that a substantial number of immune-inflammation-related pathways were abnormally activated in IS. Through weighted gene co-expression network analysis, the turquoise module was identified as meaningful. By taking the intersection of the turquoise module genes, DEM-target genes, and all DEGs, 354 genes were subsequently obtained as key IS-related genes. Among them, six characteristic genes were identified using the least absolute shrinkage and selection operator. After validation with three external datasets, transforming growth factor beta 1 (Tgfb1) was selected as the hub gene. This finding was further confirmed by gene expression pattern analysis in both the MCAO model rats and clinical IS patients. Moreover, the expression of the hub genes exhibited a negative correlation with the modified Rankin scale score (P < 0.05). Collectively, these results expand our knowledge of the genetic profile and molecular mechanisms involved in IS and suggest that the Tgfb1 gene is a potential biomarker of this disease.
Collapse
Affiliation(s)
- Qingfa Chen
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ye Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| |
Collapse
|
2
|
Zhou X, Wang J, Yu L, Qiao G, Qin D, Yuen-Kwan Law B, Ren F, Wu J, Wu A. Mitophagy and cGAS-STING crosstalk in neuroinflammation. Acta Pharm Sin B 2024; 14:3327-3361. [PMID: 39220869 PMCID: PMC11365416 DOI: 10.1016/j.apsb.2024.05.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 09/04/2024] Open
Abstract
Mitophagy, essential for mitochondrial health, selectively degrades damaged mitochondria. It is intricately linked to the cGAS-STING pathway, which is crucial for innate immunity. This pathway responds to mitochondrial DNA and is associated with cellular stress response. Our review explores the molecular details and regulatory mechanisms of mitophagy and the cGAS-STING pathway. We critically evaluate the literature demonstrating how dysfunctional mitophagy leads to neuroinflammatory conditions, primarily through the accumulation of damaged mitochondria, which activates the cGAS-STING pathway. This activation prompts the production of pro-inflammatory cytokines, exacerbating neuroinflammation. This review emphasizes the interaction between mitophagy and the cGAS-STING pathways. Effective mitophagy may suppress the cGAS-STING pathway, offering protection against neuroinflammation. Conversely, impaired mitophagy may activate the cGAS-STING pathway, leading to chronic neuroinflammation. Additionally, we explored how this interaction influences neurodegenerative disorders, suggesting a common mechanism underlying these diseases. In conclusion, there is a need for additional targeted research to unravel the complexities of mitophagy-cGAS-STING interactions and their role in neurodegeneration. This review highlights potential therapies targeting these pathways, potentially leading to new treatments for neuroinflammatory and neurodegenerative conditions. This synthesis enhances our understanding of the cellular and molecular foundations of neuroinflammation and opens new therapeutic avenues for neurodegenerative disease research.
Collapse
Affiliation(s)
- Xiaogang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Jing Wang
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Gan Qiao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Dalian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Betty Yuen-Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau SAR 999078, China
| | - Fang Ren
- Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, China
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
3
|
Cvancara DJ, Wood HA, Aboueisha M, Marshall TB, Kao TC, Phillips JO, Humphreys IM, Abuzeid WM, Lehmann AE, Kojima Y, Jafari A. Cognition and saccadic eye movement performance are impaired in chronic rhinosinusitis. Int Forum Allergy Rhinol 2024; 14:1206-1217. [PMID: 38268115 DOI: 10.1002/alr.23320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/30/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
BACKGROUND Patients with chronic rhinosinusitis (CRS) can experience cognitive dysfunction. The literature on this topic mostly reflects patient-reported measurements. Our goal was to assess cognitive function in patients with CRS using objective measures, including saccadic eye movements-a behavioral response reflecting cognitive and sensory information integration that is often compromised in conditions with impaired cognition. METHODS Participants (N = 24 with CRS, N = 23 non-CRS healthy controls) enrolled from rhinology clinic underwent sinonasal evaluation, quality of life assessment (Sino-nasal Outcome Test 22 [SNOT-22]), and cognitive assessment with the Neuro-QOL Cognitive Function-Short Form, the Montreal Cognitive Assessment (MoCA), and recording of eye movements using video-oculography. RESULTS Participants with CRS were more likely to report cognitive dysfunction (Neuro-QOL; 45.8% vs. 8.7%; p = 0.005) and demonstrate mild or greater cognitive impairment (MoCA; 41.7% vs. 8.7%; p = 0.005) than controls. Additionally, participants with CRS performed worse on the MoCA overall and within the executive functioning and memory domains (all p < 0.05) and on the anti-saccade (p = 0.014) and delay saccade (p = 0.044) eye movement tasks. Poorer performance on the MoCA (r = -0.422; p = 0.003) and the anti-saccade (r = -0.347; p = 0.017) and delay saccade (r = -0.419; p = 0.004) eye movement tasks correlated with worse CRS severity according to SNOT-22 scores. CONCLUSION This study is the first to utilize objective eye movement assessments in addition to researcher-administered cognitive testing in patients with CRS. These patients demonstrated a high prevalence of cognitive dysfunction, most notably within executive functioning and memory domains, with the degree of dysfunction correlating with the severity of CRS.
Collapse
Affiliation(s)
- David J Cvancara
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Heather A Wood
- Department of Engineering, University of Washington, Seattle, Washington, USA
| | - Mohamed Aboueisha
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine Suez Canal University, Ismailia, Egypt
| | - Thomas B Marshall
- School of Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Tzu-Cheg Kao
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - James O Phillips
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ian M Humphreys
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Waleed M Abuzeid
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Ashton E Lehmann
- Department of Otolaryngology-Head and Neck Surgery, Geisinger Medical Center, Danville, Pennsylvania, USA
| | - Yoshiko Kojima
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Aria Jafari
- Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
4
|
Vaishnavi S. Transcranial Magnetic Stimulation for Developmental Neuropsychiatric Disorders with Inflammation. Dev Neurosci 2023; 45:342-348. [PMID: 37944502 PMCID: PMC10664335 DOI: 10.1159/000535103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 11/07/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Transcranial magnetic stimulation (TMS) is a noninvasive brain stimulation technique that may potentially be helpful for neuropsychiatric symptoms of developmental disorders with inflammatory aspects. TMS utilizes a varying magnetic field to induce electrical changes in the brain. Repetitive use of TMS modulates plasticity at multiple levels, particularly at the synapse and network level. SUMMARY As inflammation can affect synaptic plasticity negatively, TMS may theoretically be a tool to address this inflammation-induced dysfunction. There are also data to suggest that TMS can directly downregulate inflammation. Neuropsychiatric consequences of multiple disorders with inflammatory aspects, particularly neurodevelopmental disorders like autism, Tourette syndrome, and obsessive-compulsive disorder (OCD), maybe treated effectively with TMS. Treatment of OCD, treatment-resistant major depression, and nicotine cessation (all in adults) are currently FDA-cleared indications, while migraine is cleared for ages 12 and above. KEY MESSAGES TMS will likely continue to grow in terms of indications as research continues to assess what brain networks are dysfunctional in various disorders and it becomes clearer how to modulate these networks. TMS may thus be best understood as a technology platform that can be utilized to modulate different brain networks affected in neuropsychiatric disorders. TMS is likely to become an increasingly important tool in targeting brain networks that could become dysfunctional in part due to inflammation in the developing brain and addressing consequent neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Sandeep Vaishnavi
- Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
- Center for Neuropsychiatry and Brain Stimulation, ARC Health, Cary, NC, USA
| |
Collapse
|
5
|
Meng F, Wang L. Bidirectional mechanism of comorbidity of depression and insomnia based on synaptic plasticity. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1518-1528. [PMID: 38432881 PMCID: PMC10929903 DOI: 10.11817/j.issn.1672-7347.2023.230082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Indexed: 03/05/2024]
Abstract
Insomnia is one of the most common accompanying symptoms of depression, with both sharing highly overlapping molecular pathways. The same pathological changes can trigger comorbidity of insomnia and depression, which further forms a vicious cycle with the involvement of more mechanisms and disease progression. Thus, understanding the potential interaction mechanisms between insomnia and depression is critical for clinical diagnosis and treatment. Comorbidity genetic factors, the hypothalamic-pituitary-adrenal axis, along with circadian rhythms of cortisol and the brain reward mechanism, are important ways in contributing to the comorbidity occurrence and development. However, owing to lack of pertinent investigational data, intricate molecular mechanisms necessitate further elaboration. Synaptic plasticity is a solid foundation for neural homeostasis. Pathological alterations of depression and insomnia may perturb the production and release of neurotransmitter, dendritic spine remodeling and elimination, which converges and reflects in aberrant synaptic dynamics. Hence, the introduction of synaptic plasticity research route and the construction of a comprehensive model of depression and insomnia comorbidity can provide new ideas for clinical depression insomnia comorbidity treatment plans.
Collapse
Affiliation(s)
- Fanhao Meng
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin 150040.
| | - Long Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin 150040, China.
| |
Collapse
|
6
|
Sun N, Cui WQ, Min XM, Zhang GM, Liu JZ, Wu HY. A new perspective on hippocampal synaptic plasticity and post-stroke depression. Eur J Neurosci 2023; 58:2961-2984. [PMID: 37518943 DOI: 10.1111/ejn.16093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 08/01/2023]
Abstract
Post-stroke depression, a common complication after stroke, severely affects the recovery and quality of life of patients with stroke. Owing to its complex mechanisms, post-stroke depression treatment remains highly challenging. Hippocampal synaptic plasticity is one of the key factors leading to post-stroke depression; however, the precise molecular mechanisms remain unclear. Numerous studies have found that neurotrophic factors, protein kinases and neurotransmitters influence depressive behaviour by modulating hippocampal synaptic plasticity. This review further elaborates on the role of hippocampal synaptic plasticity in post-stroke depression by summarizing recent research and analysing possible molecular mechanisms. Evidence for the correlation between hippocampal mechanisms and post-stroke depression helps to better understand the pathological process of post-stroke depression and improve its treatment.
Collapse
Affiliation(s)
- Ning Sun
- First College of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wen-Qiang Cui
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiao-Man Min
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Guang-Ming Zhang
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jia-Zheng Liu
- College of Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hong-Yun Wu
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
7
|
Zhu HQ, Luo J, Wang XQ, Zhang XA. Non-invasive brain stimulation for osteoarthritis. Front Aging Neurosci 2022; 14:987732. [PMID: 36247995 PMCID: PMC9557732 DOI: 10.3389/fnagi.2022.987732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease, the prevalence of OA is increasing, and the elderly are the most common in patients with OA. OA has a severe impact on the daily life of patients, this increases the demand for treatment of OA. In recent years, the application of non-invasive brain stimulation (NIBS) has attracted extensive attention. It has been confirmed that NIBS plays an important role in regulating cortical excitability and oscillatory rhythm in specific brain regions. In this review, we summarized the therapeutic effects and mechanisms of different NIBS techniques in OA, clarified the potential of NIBS as a treatment choice for OA, and provided prospects for further research in the future.
Collapse
Affiliation(s)
- Hui-Qi Zhu
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Jing Luo
- Department of Sport Rehabilitation, Xi’an University of Sport, Xi’an, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- Xue-Qiang Wang,
| | - Xin-An Zhang
- College of Kinesiology, Shenyang Sport University, Shenyang, China
- *Correspondence: Xin-An Zhang,
| |
Collapse
|
8
|
Liu P, Zhao S, Qiao H, Li T, Mi W, Xu Z, Xue X. Does propofol definitely improve postoperative cognitive dysfunction?-a review of propofol-related cognitive impairment. Acta Biochim Biophys Sin (Shanghai) 2022; 54:875-881. [PMID: 35713318 PMCID: PMC9828335 DOI: 10.3724/abbs.2022067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Postoperative cognitive dysfunction (POCD) is a common brain function-related complication after surgery. In addition to old age being an independent risk factor, anesthetics are also important predisposing factors. Among them, propofol is the most commonly used intravenous anesthetic in clinical practice. It has a rapid onset, short half-life, and high recovery quality. Many studies report that propofol can attenuate surgery-induced cognitive impairment, however, some other studies reveal that propofol also induces cognitive dysfunction. Therefore, this review summarizes the effects of propofol on the cognition, and discusses possible related mechanisms, which aims to provide some evidence for the follow-up studies.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China
| | - Sheng Zhao
- Department of CardiologyFuwai HospitalNational Center for Cardiovascular DiseaseChinese Academy of Medical Science and Peking Union Medical CollegeBeijing100037China
| | - Hui Qiao
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Tianzuo Li
- Department of AnesthesiologyBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China
| | - Weidong Mi
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Zhipeng Xu
- Anesthesia and Operation Centerthe First Medical CenterChinese PLA General HospitalBeijing100853China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| | - Xinying Xue
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityBeijing100038China,Correspondence address. Tel: +86-13381082966; E-mail: (W.M.) / Tel: +86-15210319808; E-mail: (Z.X.) /Tel: +86-15210903118; E-mail: (X.X.) @
| |
Collapse
|
9
|
Mao M, Zhou Z, Sun M, Wang C, Sun J. The dysfunction of parvalbumin interneurons mediated by microglia contributes to cognitive impairment induced by lipopolysaccharide challenge. Neurosci Lett 2021; 762:136133. [PMID: 34311051 DOI: 10.1016/j.neulet.2021.136133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND The mechanisms underlying cognitive impairments induced by systemic inflammation remain unclear. Increasing evidence has suggested that parvalbumin (PV) interneurons play an important role in regulating cognitive behaviors and its dysfunction is implicated in many neurological disorders. Thus, the present study was aimed to detect whether the destruction of PV interneurons mediates cognitive impairment associated with systemic inflammation. METHODS Male wild-type C57BL/6J mice (12-14 weeks old) received lipopolysaccharide (LPS 2 mg/kg i.p.) injection to establish the systemic inflammation model. For the suppression of microglial activation, minocycline (50 mg/kg i.p.) was applied. Animal behavior tests were conducted on day 3 post-LPS injection including the open field test, fear conditioning test and Y maze test. The PV expression in hippocampus was detected by Western blot and immunofluorescence. The number of perisomatic boutons around the NeuN-positive cells and microglia in hippocampus was detected by immunofluorescence. RESULTS LPS induced hippocampus-dependent memory and working memory impairment, coinciding with decreased PV expression, reduced perisomatic boutons around the NeuN-positive cells and activated microglia in the hippocampus. Notably, the treatment of minocycline suppressed the microglial activation and rescued the PV expression as well as the perisomatic boutons around the NeuN-positive cells in the hippocampus, contributing to improved cognitive function. CONCLUSION Our study suggests that the dysfunction of parvalbumin interneurons mediated by microglia plays a key role in LPS-induced cognitive impairments, which may serve a therapeutic strategy for cognitive disorders associated with systemic inflammation.
Collapse
Affiliation(s)
- Meng Mao
- Department of Anesthesiology, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Zhenhui Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Menghan Sun
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chaoran Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Sun
- Department of Anesthesiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China.
| |
Collapse
|
10
|
Lukiw WJ, Arceneaux L, Li W, Bond T, Zhao Y. Gastrointestinal (GI)-Tract Microbiome Derived Neurotoxins and their Potential Contribution to Inflammatory Neurodegeneration in Alzheimer's Disease (AD). JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2021; 11:525. [PMID: 34457996 PMCID: PMC8395586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The human gastrointestinal (GI)-tract microbiome is a rich, complex and dynamic source of microorganisms that possess a staggering diversity and complexity. Importantly there is a significant variability in microbial complexity even amongst healthy individuals-this has made it difficult to link specific microbial abundance patterns with age-related neurological disease. GI-tract commensal microorganisms are generally beneficial to human metabolism and immunity, however enterotoxigenic forms of microbes possess significant potential to secrete what are amongst the most neurotoxic and pro-inflammatory biopolymers known. These include toxic glycolipids such as lipopolysaccharide (LPS), enterotoxins, microbial-derived amyloids and small non-coding RNA. One major microbial species of the GI-tract microbiome, about ~100-fold more abundant than Escherichia coli in deep GI-tract regions is Bacteroides fragilis, an anaerobic, rod-shaped Gram-negative bacterium. B. fragilis can secrete: (i) a particularly potent, pro-inflammatory and unique LPS subtype (BF-LPS); and (ii) a zinc-metalloproteinase known as B. fragilis-toxin (BFT) or fragilysin. Ongoing studies indicate that BF-LPS and/or BFT disrupt paracellular-and transcellular-barriers by cleavage of intercellular-proteins resulting in 'leaky' barriers. These barriers: (i) become defective and more penetrable with aging and disease; and (ii) permit entry of microbiome-derived neurotoxins into the systemic-circulation from which they next transit the blood-brain barrier and gain access to the CNS. Here LPS accumulates and significantly alters homeostatic patterns of gene expression. The affinity of LPS for neuronal nuclei is significantly enhanced in the presence of amyloid beta 42 (Aβ42) peptides. Recent research on the appearance of the brain thanatomicrobiome at the time of death and the increasing likelihood of a complex brain microbiome are reviewed and discussed. This paper will also highlight some recent advances in this extraordinary research area that links the pro-inflammatory exudates of the GI-tract microbiome with innate-immune disturbances and inflammatory-signaling within the CNS with reference to Alzheimer's disease (AD) wherever possible.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Ophthalmology, LSU Health Sciences Center,
New Orleans, LA, United States,Department of Neurology, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Corresponding author: Dr. Walter J. Lukiw, LSU
Neuroscience Center, Louisiana State University Health Sciences Center, New
Orleans, LA, United States,
| | - Lisa Arceneaux
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Wenhong Li
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Pharmacology, School of Pharmacy, Jiangxi
University of Traditional Chinese Medicine (TCM), Nanchang, China
| | - Taylor Bond
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health
Sciences Center, New Orleans, LA, United States,Department of Anatomy and Cell Biology, Louisiana State
University, New Orleans, LA, United States
| |
Collapse
|