1
|
Uthirapathy S, Ahmed AT, Jawad M, Jain V, Ballal S, Abdul Kareem Al-Hetty HR, Khandelwal G, Arya R, Muthena Kariem, Mustafa YF. Tripartite motif (TRIM) proteins roles in the regulation of immune system responses: Focus on autoimmune diseases. Exp Cell Res 2024; 444:114379. [PMID: 39667699 DOI: 10.1016/j.yexcr.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
The tripartite motif (TRIM) proteins are well-studied as essential modulators of many processes, including the modulation of several pathways linked to immunological reactions. Most TRIM family members can polyubiquitinate the targeted proteins by acting as E3 ubiquitin ligases. According to current research, TRIMs play a critical role in innate immune response via modifying transcription factors, pattern recognition receptors (PRRs), and key adaptor proteins within innate immunity. It is becoming clearer that TRIMs play important roles in adaptive immune response, especially in the stimulation and promotion of T cells. We highlight the E3 ubiquitin ligase functions of TRIMs in the PRRs axis linked to autoimmune disorders. By focusing on TRIM family members, we also clarify the new approaches to regulating immunological reactions to alleviate autoimmunity.
Collapse
Affiliation(s)
- Subasini Uthirapathy
- Faculty of Pharmacy, Pharmacology Department, Tishk International University, Erbil, Kurdistan Region, Iraq.
| | | | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Vicky Jain
- Marwadi University Research Center, Department of Chemistry, Faculty of Science, Marwadi University, Rajkot, 360003, Gujarat, India
| | - Suhas Ballal
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | | | - Gaurav Khandelwal
- Department of Nephrology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Renu Arya
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Muthena Kariem
- Department of medical analysis, Medical laboratory technique college, the Islamic University, Najaf, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of medical analysis, Medical laboratory technique college, the Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| |
Collapse
|
2
|
Manzanero-Ortiz S, Franco M, Laxmeesha M, Carmena A. Drosophila p53 tumor suppressor directly activates conserved asymmetric stem cell division regulators. iScience 2024; 27:111118. [PMID: 39524346 PMCID: PMC11546965 DOI: 10.1016/j.isci.2024.111118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/08/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
p53 is the most mutated tumor suppressor gene in human cancers. Besides p53 classical functions inducing cell-cycle arrest and apoptosis in stressed cells, additional p53 non-canonical roles in unstressed cells have emerged over the past years, including the mode of stem cell division regulation. However, the mechanisms by which p53 impacts on this process remain elusive. Here, we show that Drosophila p53 controls asymmetric stem cell division (ASCD), a key process in development, cancer and adult tissue homeostasis, by transcriptionally activating Numb, Brat, and Traf4 ASCD regulators. p53 knockout caused failures in their localization in dividing neural stem cells, as well as a significant decrease in their expression levels. Moreover, p53 directly bound numb, brat, and Traf4 regulatory regions. Remarkably, human and mice genes related to Drosophila brat (TRIM32) and Traf4 (TRAF4) were recently identified in a meta-analysis of transcriptomic and ChIP-seq datasets as predicted conserved p53 targets.
Collapse
Affiliation(s)
- Sandra Manzanero-Ortiz
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Maribel Franco
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Mahima Laxmeesha
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| | - Ana Carmena
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas/Universidad Miguel Hernández de Elche, Sant Joan d'Alacant, 03550 Alicante, Spain
| |
Collapse
|
3
|
Xie Y, Cao J, Gan S, Xu L, Zhang D, Qian S, Xu F, Ding Q, Schoggins JW, Fan W. TRIM32 inhibits Venezuelan equine encephalitis virus infection by targeting a late step in viral entry. PLoS Pathog 2024; 20:e1012312. [PMID: 39527628 PMCID: PMC11581401 DOI: 10.1371/journal.ppat.1012312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 11/21/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.
Collapse
Affiliation(s)
- Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuyi Gan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Qian
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qiang Ding
- School of Medical Sciences, Tsinghua University, Beijing, China
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
- Department of Infectious Diseases of Children’s Hospital, Zhejiang University School of Medicine, National Clinical Center for Children’s Health, Hangzhou, China
| |
Collapse
|
4
|
Maghsoudloo M, Mokhtari K, Jamali B, Gholamzad A, Entezari M, Hashemi M, Fu J. Multifaceted role of TRIM28 in health and disease. MedComm (Beijing) 2024; 5:e790. [PMID: 39534556 PMCID: PMC11554878 DOI: 10.1002/mco2.790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/28/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
The TRIM (tripartite motif) family, with TRIM28 as a key member, plays a vital role in regulating health and disease. TRIM28 contains various functional domains essential for transcriptional regulation, primarily through its interaction with KRAB-ZNF proteins, which influence chromatin remodeling and gene expression. Despite extensive research, the precise mechanisms by which TRIM28 impacts health and disease remain elusive. This review delves into TRIM28's multifaceted roles in maintaining health, contributing to a variety of diseases, and influencing cancer progression. In cancers, TRIM28 exhibits a dual nature, functioning as both a tumor promoter and suppressor depending on the cellular context and cancer type. The review also explores its critical involvement in processes such as DNA repair, cell cycle regulation, epithelial-to-mesenchymal transition, and the maintenance of stem cell properties. By uncovering TRIM28's complex roles across different cancers and other diseases, this review underscores its potential as a therapeutic target. The significance of TRIM28 as a versatile regulator opens the door to innovative therapeutic strategies, particularly in cancer treatment and the management of other diseases. Ongoing research into TRIM28 may yield key insights into disease progression and novel treatment options.
Collapse
Affiliation(s)
- Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| | - Khatere Mokhtari
- Department of Cellular and Molecular Biology and MicrobiologyFaculty of Biological Science and TechnologyUniversity of IsfahanIsfahanIran
| | - Behdokht Jamali
- Department of Microbiology and GeneticKherad Institute of Higher EducationBusheherIran
| | - Amir Gholamzad
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical SciencesIslamic Azad UniversityTehranIran
- Department of GeneticsFaculty of Advanced Science and TechnologyTehran Medical SciencesIslamic Azad UniversityTehranIran
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncologythe Research Center for Preclinical MedicineSouthwest Medical UniversityLuzhouSichuanChina
| |
Collapse
|
5
|
Bolado-Carrancio A, Tapia O, Rodríguez-Rey JC. Ubiquitination Insight from Spinal Muscular Atrophy-From Pathogenesis to Therapy: A Muscle Perspective. Int J Mol Sci 2024; 25:8800. [PMID: 39201486 PMCID: PMC11354275 DOI: 10.3390/ijms25168800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Spinal muscular atrophy (SMA) is one of the most frequent causes of death in childhood. The disease's molecular basis is deletion or mutations in the SMN1 gene, which produces reduced survival motor neuron protein (SMN) levels. As a result, there is spinal motor neuron degeneration and a large increase in muscle atrophy, in which the ubiquitin-proteasome system (UPS) plays a significant role. In humans, a paralogue of SMN1, SMN2 encodes the truncated protein SMNΔ7. Structural differences between SMN and SMNΔ7 affect the interaction of the proteins with UPS and decrease the stability of the truncated protein. SMN loss affects the general ubiquitination process by lowering the levels of UBA1, one of the main enzymes in the ubiquitination process. We discuss how SMN loss affects both SMN stability and the general ubiquitination process, and how the proteins involved in ubiquitination could be used as future targets for SMA treatment.
Collapse
Affiliation(s)
- Alfonso Bolado-Carrancio
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| | - Olga Tapia
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas, Universidad de la Laguna, 38200 La Laguna, Spain
| | - José C. Rodríguez-Rey
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria-and Instituto de Investigación Marqués de Valdecilla (IDIVAL), 39011 Santander, Spain;
| |
Collapse
|
6
|
Wiberg A, Lucey MA, Kleeman S, Kang Y, Ng M, Furniss D. Genetic Correlations between Migraine and Carpal Tunnel Syndrome. Plast Reconstr Surg 2024; 154:126e-134e. [PMID: 37606917 PMCID: PMC11195923 DOI: 10.1097/prs.0000000000010976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/02/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Surgical deactivation of extracranial nerve trigger sites is now well established as an effective treatment for migraine headache. Parallels have been drawn to median nerve decompression for carpal tunnel syndrome (CTS), and 2 previous studies have demonstrated an association between migraine and CTS. The authors sought to (1) substantiate these findings in a considerably larger UK cohort, and (2) investigate potential genetic associations between the 2 disorders. METHODS Nested case-control studies were conducted in the UK Biobank cohort of 401,656 individuals. Odds ratios were calculated for the association between migraine and CTS in the overall cohort and sex-stratified subsets. Genetic correlation between migraine and CTS was interrogated by linkage disequilibrium score regression, leveraging data from published genomewide association studies. Regions of genetic overlap were identified by multitrait analysis of genomewide association studies and cross-phenotype association. RESULTS Migraine and CTS show a significant epidemiologic association within UK Biobank (OR, 1.14, 95% CI, 1.04 to 1.25; P = 0.0058), which is specific to women (OR, 1.15; 95% CI, 1.04 to 1.28; P = 0.0057) and not men (OR, 1.07; 95% CI, 0.82 to 1.40; P = 0.61). Genetic analysis demonstrated a significant positive genetic correlation between the 2 disorders ( rg = 0.13; P = 0.0039), and implicated the TRIM32 locus on chromosome 9 as a region of genetic overlap. CONCLUSIONS This study replicates past reports of an epidemiologic association between CTS and migraine, albeit in women only. This association is underpinned by a genetic correlation, with shared genetic susceptibility at the TRIM32 locus. The authors' data add credibility to the notion that an element of entrapment neuropathy underlies migraine pathophysiology. CLINICAL QUESTION/LEVEL OF EVIDENCE Risk, III.
Collapse
Affiliation(s)
- Akira Wiberg
- From the Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital
| | - Maria A. Lucey
- From the Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford
| | | | - Youngjoo Kang
- From the Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford
| | - Mike Ng
- From the Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford
| | - Dominic Furniss
- From the Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Science, University of Oxford
- Department of Plastic and Reconstructive Surgery, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital
| |
Collapse
|
7
|
Zhang Y, Dong Z, Gu F, Xu Y, Li Y, Sun W, Rao W, Du S, Zhu C, Wang Y, Wei F, Cai Q. Degradation of TRIM32 is induced by RTA for Kaposi's sarcoma-associated herpesvirus lytic replication. J Virol 2024; 98:e0000524. [PMID: 38717113 PMCID: PMC11237441 DOI: 10.1128/jvi.00005-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/05/2024] [Indexed: 06/14/2024] Open
Abstract
TRIM32 is often aberrantly expressed in many types of cancers. Kaposi's sarcoma-associated herpesvirus (KSHV) is linked with several human malignancies, including Kaposi's sarcoma and primary effusion lymphomas (PELs). Increasing evidence has demonstrated the crucial role of KSHV lytic replication in viral tumorigenesis. However, the role of TRIM32 in herpesvirus lytic replication remains unclear. Here, we reveal that the expression of TRIM32 is upregulated by KSHV in latency, and reactivation of KSHV lytic replication leads to the inhibition of TRIM32 in PEL cells. Strikingly, RTA, the master regulator of lytic replication, interacts with TRIM32 and dramatically promotes TRIM32 for degradation via the proteasome systems. Inhibition of TRIM32 induces cell apoptosis and in turn inhibits the proliferation and colony formation of KSHV-infected PEL cells and facilitates the reactivation of KSHV lytic replication and virion production. Thus, our data imply that the degradation of TRIM32 is vital for the lytic activation of KSHV and is a potential therapeutic target for KSHV-associated cancers. IMPORTANCE TRIM32 is associated with many cancers and viral infections; however, the role of TRIM32 in viral oncogenesis remains largely unknown. In this study, we found that the expression of TRIM32 is elevated by Kaposi's sarcoma-associated herpesvirus (KSHV) in latency, and RTA (the master regulator of lytic replication) induces TRIM32 for proteasome degradation upon viral lytic reactivation. This finding provides a potential therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Yulin Zhang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhongwei Dong
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Feng Gu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yifei Xu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Li
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Sun
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wutian Rao
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shujuan Du
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Caixia Zhu
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuyan Wang
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fang Wei
- ShengYushou Center of Cell Biology and Immunology, Joint International Research Laboratory of Metabolic & Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiliang Cai
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Shanghai Institute of Infections Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganism and Infection, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
8
|
Xie Y, Cao J, Gan S, Xu L, Zhang D, Qian S, Xu F, Ding Q, Schoggins JW, Fan W. TRIM32 inhibits Venezuelan Equine Encephalitis Virus Infection by targeting a late step in viral entry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597282. [PMID: 38895352 PMCID: PMC11185716 DOI: 10.1101/2024.06.04.597282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Alphaviruses are mosquito borne RNA viruses that are a reemerging public health threat. Alphaviruses have a broad host range, and can cause diverse disease outcomes like arthritis, and encephalitis. The host ubiquitin proteasome system (UPS) plays critical roles in regulating cellular processes to control the infections with various viruses, including alphaviruses. Previous studies suggest alphaviruses hijack UPS for virus infection, but the molecular mechanisms remain poorly characterized. In addition, whether certain E3 ubiquitin ligases or deubiquitinases act as alphavirus restriction factors remains poorly understood. Here, we employed a cDNA expression screen to identify E3 ubiquitin ligase TRIM32 as a novel intrinsic restriction factor against alphavirus infection, including VEEV-TC83, SINV, and ONNV. Ectopic expression of TRIM32 reduces alphavirus infection, whereas depletion of TRIM32 with CRISPR-Cas9 increases infection. We demonstrate that TRIM32 inhibits alphaviruses through a mechanism that is independent of the TRIM32-STING-IFN axis. Combining reverse genetics and biochemical assays, we found that TRIM32 interferes with genome translation after membrane fusion, prior to replication of the incoming viral genome. Furthermore, our data indicate that the monoubiquitination of TRIM32 is important for its antiviral activity. Notably, we also show two TRIM32 pathogenic mutants R394H and D487N, related to Limb-girdle muscular dystrophy (LGMD), have a loss of antiviral activity against VEEV-TC83. Collectively, these results reveal that TRIM32 acts as a novel intrinsic restriction factor suppressing alphavirus infection and provides insights into the interaction between alphaviruses and the host UPS.
Collapse
Affiliation(s)
- Yifan Xie
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jie Cao
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Shuyi Gan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Lingdong Xu
- Laboratory Animal Center, Zhejiang University, Hangzhou, China
| | - Dongjie Zhang
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Suhong Qian
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Feng Xu
- Department of Infectious Diseases, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, China
| | - Qiang Ding
- School of Medical Sciences, Tsinghua University, Beijing, China
| | - John W. Schoggins
- Department of Microbiology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Wenchun Fan
- Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Wang L, Song YY, Wang Y, Liu XX, Yin YL, Gao S, Zhang F, Li LY, Zhang ZS. RHBDF1 deficiency suppresses melanoma glycolysis and enhances efficacy of immunotherapy by facilitating glucose-6-phosphate isomerase degradation via TRIM32. Pharmacol Res 2023; 198:106995. [PMID: 37979663 DOI: 10.1016/j.phrs.2023.106995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/20/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Melanoma is a dangerous form of skin cancer, making it important to investigate new mechanisms and approaches to enhance the effectiveness of treatment. Here, we establish a positive correlation between the human rhomboid family-1 (RHBDF1) protein and melanoma malignancy. We demonstrate that the melanoma RHBDF1 decrease dramatically inhibits tumor growth and the development of lung metastases, which may be related to the impaired glycolysis. We show that RHBDF1 function is essential to the maintenance of high levels of glycolytic enzymes, especially glucose-6-phosphate isomerase (GPI). Additionally, we discover that the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) mediates the K27/K63-linked ubiquitination of GPI and the ensuing lysosomal degradation process. We prove that the multi-transmembrane domain of RHBDF1 is in competition with GPI, preventing the latter from interacting with NCL1-HT2A-LIN41 (NHL) domain of TRIM32. We also note that the mouse RHBDF1's R747 and Y799 are crucial for competitive binding and GPI protection. Artificially silencing the Rhbdf1 gene in a mouse melanoma model results in declined lactic acid levels, elevated cytotoxic lymphocyte infiltration, and improved tumor responsiveness to immunotherapy. These results provide credence to the hypothesis that RHBDF1 plays a significant role in melanoma regulation and suggest that blocking RHBDF1 may be an efficient technique for reestablishing the tumor immune microenvironment (TIME) in melanoma and halting its progression.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Yuan-Yuan Song
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yan Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Xiu-Xiu Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yi-Lun Yin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Shan Gao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Fan Zhang
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Center for Brain Science and Disease, Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang 050017, China
| | - Lu-Yuan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| | - Zhi-Song Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, the Haihe Laboratory of Cell Ecosystem, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Yu J, Feng D, Bao L, Zhang B. TRIM32 Inhibits NEK7 Ubiquitylation-Dependent Microglia Pyroptosis After Spinal Cord Injury. Mol Biotechnol 2023:10.1007/s12033-023-00989-4. [PMID: 38030945 DOI: 10.1007/s12033-023-00989-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Spinal cord injury (SCI) is a disabling disease associated with microglial activation. Tripartite motif containing 32 (TRIM32) is an E3 ubiquitin ligase that plays a role in SCI. This study aimed to explore the role of TRIM32 in SCI and its potential mechanisms. We established an SCI mouse model to assess the function of TRIM32 using quantitative real-time polymerase chain reaction (qPCR), and hematoxylin and eosin staining. Additionally, a lipopolysaccharides (LPS)-induced cell injury model was generated to explore the impact of TRIM32 on pyroptosis using qPCR, propidium iodide staining, and western blotting. The ubiquitylation of NEK7 was analyzed using western blotting, co-immunoprecipitation, and immunofluorescence staining. The results showed that TRIM32 expression was increased in SCI mice and LPS-induced BV-2 cells. Overexpression of TRIM32 ameliorated SCI in mice and suppressed pyroptosis in LPS-treated BV-2 cells. Additionally, the E3 ligase TRIM32 promoted the ubiquitylation of NEK7 at the K64 site, leading to the downregulation of NEK7 levels. Inhibiting NEK7 ubiquitylation reversed the suppression of pyroptosis by TRIM32. In conclusion, TRIM32 inhibits microglia pyroptosis by facilitating the ubiquitylation of NEK7 at the K64 site, thereby alleviating the progression of SCI. The findings suggest that TRIM32 has the potential to be a therapeutic target of SCI.
Collapse
Affiliation(s)
- Jiasheng Yu
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine (Shuyang Hospital of Traditional Chinese Medicine affiliated to Yangzhou University), No. 28, Shanghai Middle Road, Shuyang County, Suqian City, 223600, Jiangsu Province, China
| | - Dongqian Feng
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine (Shuyang Hospital of Traditional Chinese Medicine affiliated to Yangzhou University), No. 28, Shanghai Middle Road, Shuyang County, Suqian City, 223600, Jiangsu Province, China
| | - Lei Bao
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine (Shuyang Hospital of Traditional Chinese Medicine affiliated to Yangzhou University), No. 28, Shanghai Middle Road, Shuyang County, Suqian City, 223600, Jiangsu Province, China
| | - Bin Zhang
- Department of Orthopedics, Shuyang Hospital of Traditional Chinese Medicine (Shuyang Hospital of Traditional Chinese Medicine affiliated to Yangzhou University), No. 28, Shanghai Middle Road, Shuyang County, Suqian City, 223600, Jiangsu Province, China.
| |
Collapse
|
11
|
Yang X, Ma H, Zhang M, Wang R, Li X. TRIM32 promotes oral squamous cell carcinoma progression by enhancing FBP2 ubiquitination and degradation. Biochem Biophys Res Commun 2023; 678:165-172. [PMID: 37640002 DOI: 10.1016/j.bbrc.2023.08.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
The aberrant expression of TRIM32, an E3 ubiquitin ligase, has been identified in multiple malignant cancer types. Nevertheless, the functional roles and detailed mechanisms of TRIM32 in oral squamous cell carcinoma (OSCC) remain to be elucidated. Here, we investigated TRIM32 expression and its functional role in OSCC. TRIM32 expression was consistently elevated in OSCC tissues, particularly in samples from patients with advanced clinical grades. Functionally, silencing TRIM32 dampened OSCC cell growth, migration and invasion. Additionally, a xenograft tumor model suggested that TRIM32 knockdown suppressed in vivo OSCC tumor growth and lung metastasis formation. Mechanistically, we discovered that TRIM32 directly bound to the FBP2 protein via mass spectrometry and co-immunoprecipitation. TRIM32 could interact with FBP2 and accelerates its degradation, eventually enhancing glycolysis in OSCC cell lines. Importantly, rescue assays demonstrated that FBP2 silencing could at least partially offset the tumor-suppressive and aerobic glycolysis inhibition effect induced by TRIM32 knockdown. Thus, our findings demonstrate that TRIM32 plays a crucial role in promoting tumor growth and enhancing glycolysis through FBP2 inhibition. Given OSCC is associated with increased glycolysis levels, our study suggests potential therapeutic targets for OSCC treatment.
Collapse
Affiliation(s)
- Xiao Yang
- Department of Stomatology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China; Postdoctoral Mobile Station of Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, Changqing District, Jinan, 250399, Shandong, China.
| | - Haifeng Ma
- Department of Stomatology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China.
| | - Min Zhang
- Department of Stomatology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China.
| | - Renzhong Wang
- Department of Otolaryngology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 42, Wenhua Road, Jinan, 250011, Shandong, China.
| | - Xiaoyu Li
- Department of Otolaryngology, Affiliated Hospital of Jining Medical University, No. 89, Guhuai Road, Jining, 272000, Shandong, China.
| |
Collapse
|
12
|
Jeong SY, Choi JH, Kim J, Woo JS, Lee EH. Tripartite Motif-Containing Protein 32 (TRIM32): What Does It Do for Skeletal Muscle? Cells 2023; 12:2104. [PMID: 37626915 PMCID: PMC10453674 DOI: 10.3390/cells12162104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Tripartite motif-containing protein 32 (TRIM32) is a member of the tripartite motif family and is highly conserved from flies to humans. Via its E3 ubiquitin ligase activity, TRIM32 mediates and regulates many physiological and pathophysiological processes, such as growth, differentiation, muscle regeneration, immunity, and carcinogenesis. TRIM32 plays multifunctional roles in the maintenance of skeletal muscle. Genetic variations in the TRIM32 gene are associated with skeletal muscular dystrophies in humans, including limb-girdle muscular dystrophy type 2H (LGMD2H). LGMD2H-causing genetic variations of TRIM32 occur most frequently in the C-terminal NHL (ncl-1, HT2A, and lin-41) repeats of TRIM32. LGMD2H is characterized by skeletal muscle dystrophy, myopathy, and atrophy. Surprisingly, most patients with LGMD2H show minimal or no dysfunction in other tissues or organs, despite the broad expression of TRIM32 in various tissues. This suggests more prominent roles for TRIM32 in skeletal muscle than in other tissues or organs. This review is focused on understanding the physiological roles of TRIM32 in skeletal muscle, the pathophysiological mechanisms mediated by TRIM32 genetic variants in LGMD2H patients, and the correlations between TRIM32 and Duchenne muscular dystrophy (DMD).
Collapse
Affiliation(s)
- Seung Yeon Jeong
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jun Hee Choi
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jooho Kim
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jin Seok Woo
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 10833, USA
| | - Eun Hui Lee
- Department of Physiology, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine & Health Sciences, Graduate School, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
13
|
Chaikuad A, Zhubi R, Tredup C, Knapp S. Comparative structural analyses of the NHL domains from the human E3 ligase TRIM-NHL family. IUCRJ 2022; 9:720-727. [PMID: 36381143 PMCID: PMC9634614 DOI: 10.1107/s2052252522008582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
Tripartite motif (TRIM) proteins constitute one of the largest subfamilies of the RING-type E3 ubiquitin ligases that play a role in diverse processes from homeostasis and immune response to viral restriction. While TRIM proteins typically harbor an N-terminal RING finger, a B-box and a coiled-coil domain, a high degree of diversity lies in their C termini that contain diverse protein interaction modules, most of which, both structures and their roles in intermolecular interactions, remain unknown. Here, high-resolution crystal structures of the NHL domains of three of the four human TRIM-NHL proteins, namely TRIM2, TRIM3 and TRIM71, are presented. Comparative structural analyses revealed that, despite sharing an evolutionarily conserved six-bladed β-propeller architecture, the low sequence identities resulted in distinct properties of these interaction domains at their putative binding sites for macromolecules. Interestingly, residues lining the binding cavities represent a hotspot for genetic mutations linked to several diseases. Thus, high sequence diversity within the conserved NHL domains might be essential for differentiating binding partners among TRIM-NHL proteins.
Collapse
Affiliation(s)
- Apirat Chaikuad
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Rezart Zhubi
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Claudia Tredup
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
| | - Stefan Knapp
- Institute for Pharmaceutical Chemistry, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 9, D-60438 Frankfurt am Main, Germany
- Structural Genomics Consortium (SGC), Buchmann Institute for Molecular Life Sciences, Johann Wolfgang Goethe-University, Max-von-Laue-Strasse 15, D-60438 Frankfurt am Main, Germany
- German Translational Cancer Network (DKTK), Site Frankfurt/Mainz, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany
| |
Collapse
|
14
|
Yu C, Rao D, Wang T, Song J, Zhang L, Huang W. Emerging roles of TRIM27 in cancer and other human diseases. Front Cell Dev Biol 2022; 10:1004429. [PMID: 36200036 PMCID: PMC9527303 DOI: 10.3389/fcell.2022.1004429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/05/2022] [Indexed: 12/24/2022] Open
Abstract
As a member of the TRIM protein family, TRIM27 is a RING-mediated E3 ubiquitin ligase that can mark other proteins for degradation. Its ubiquitination targets include PTEN, IκBα and p53, which allows it to regulate many signaling pathways to exert its functions under both physiological and pathological conditions, such as cell proliferation, differentiation and apoptosis. During the past decades, TRIM27 was reported to be involved in many diseases, including cancer, lupus nephritis, ischemia-reperfusion injury and Parkinson’s disease. Although the research interest in TRIM27 is increasing, there are few reviews about the diverse roles of this protein. Here, we systematically review the roles of TRIM27 in cancer and other human diseases. Firstly, we introduce the biological functions of TRIM27. Next, we focus on the roles of TRIM27 in cancer, including ovarian cancer, breast cancer and lung cancer. At the same time, we also describe the roles of TRIM27 in other human diseases, such as lupus nephritis, ischemia-reperfusion injury and Parkinson’s disease. Finally, we discuss the future directions of TRIM27 research, especially its potential roles in tumor immunity.
Collapse
Affiliation(s)
- Chengpeng Yu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dean Rao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Tiantian Wang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jia Song, ; Lei Zhang, ; Wenjie Huang,
| | - Lei Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Shanxi Medical University, Jinzhong, China
- Tongji Medical College, Shanxi Tongji Hospital, Huazhong University of Science and Technology, Taiyuan, China
- *Correspondence: Jia Song, ; Lei Zhang, ; Wenjie Huang,
| | - Wenjie Huang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jia Song, ; Lei Zhang, ; Wenjie Huang,
| |
Collapse
|
15
|
Xu X, Qi J, Yang J, Pan T, Han H, Yang M, Han Y. Up-Regulation of TRIM32 Associated With the Poor Prognosis of Acute Myeloid Leukemia by Integrated Bioinformatics Analysis With External Validation. Front Oncol 2022; 12:848395. [PMID: 35756612 PMCID: PMC9213666 DOI: 10.3389/fonc.2022.848395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a malignant and molecularly heterogeneous disease. It is essential to clarify the molecular mechanisms of AML and develop targeted treatment strategies to improve patient prognosis. Methods AML mRNA expression data and survival status were extracted from TCGA and GEO databases (GSE37642, GSE76009, GSE16432, GSE12417, GSE71014). Weighted gene co-expression network analysis (WGCNA) and differential gene expression analysis were performed. Functional enrichment analysis and protein-protein interaction (PPI) network were used to screen out hub genes. In addition, we validated the expression levels of hub genes as well as the prognostic value and externally validated TRIM32 with clinical data from our center. AML cell lines transfected with TRIM32 shRNA were also established to detect the proliferation in vitro. Results A total of 2192 AML patients from TCGA and GEO datasets were included in this study and 20 differentially co-expressed genes were screened by WGCNA and differential gene expression analysis methods. These genes were mainly enriched in phospholipid metabolic processes (biological processes, BP), secretory granule membranes (cellular components, CC), and protein serine/threonine kinase activity (molecular functions, MF). In addition, the protein-protein interaction (PPI) network contains 15 nodes and 15 edges and 10 hub genes (TLE1, GLI2, HDAC9, MICALL2, DOCK1, PDPN, RAB27B, SIX3, TRIM32 and TBX1) were identified. The expression of 10 central genes, except TLE1, was associated with survival status in AML patients (p<0.05). High expression of TRIM32 was tightly associated with poor relapse-free survival (RFS) and overall survival (OS) in AML patients, which was verified in the bone marrow samples from our center. In vitro, knockdown of TRIM32 can inhibit the proliferation of AML cell lines. Conclusion TRIM32 was associated with the progression and prognosis of AML patients and could be a potential therapeutic target and biomarker for AML in the future.
Collapse
Affiliation(s)
- Xiaoyan Xu
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jiaqian Qi
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Jingyi Yang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Tingting Pan
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Haohao Han
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Meng Yang
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Yue Han
- National clinical research center for hematologic diseases, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.,Department of Hematology, Key Laboratory of Thrombosis and Hemostasis of Ministry of Health, Suzhou, China.,State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Regulating Proteasome Activity. Biomolecules 2022; 12:biom12030343. [PMID: 35327535 PMCID: PMC8945711 DOI: 10.3390/biom12030343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/05/2023] Open
Abstract
Strictly controlled degradation of the proteome is a key factor in maintaining cellular homeostasis and allows a rapid and effective response to a variety of different stress challenges [...]
Collapse
|
17
|
Zhang B, Yan YY, Gu YQ, Teng F, Lin X, Zhou XL, Che JX, Dong XW, Zhou LX, Lin NM. Inhibition of TRIM32 by ibr-7 treatment sensitizes pancreatic cancer cells to gemcitabine via mTOR/p70S6K pathway. J Cell Mol Med 2021; 26:515-526. [PMID: 34921503 PMCID: PMC8743670 DOI: 10.1111/jcmm.17109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is one of the most notorious diseases for being asymptomatic at early stage and high mortality rate thereafter. However, either chemotherapy or targeted therapy has rarely achieved success in recent clinical trials for pancreatic cancer. Novel therapeutic regimens or agents are urgently in need. Ibr‐7 is a novel derivative of ibrutinib, displaying superior antitumour activity in pancreatic cancer cells than ibrutinib. In vitro studies showed that ibr‐7 greatly inhibited the proliferation of BxPC‐3, SW1990, CFPAC‐1 and AsPC‐1 cells via the induction of mitochondrial‐mediated apoptosis and substantial suppression of mTOR/p70S6K pathway. Moreover, ibr‐7 was able to sensitize pancreatic cancer cells to gemcitabine through the efficient repression of TRIM32, which was positively correlated with the proliferation and invasiveness of pancreatic cancer cells. Additionally, knockdown of TRIM32 diminished mTOR/p70S6K activity in pancreatic cancer cells, indicating a positive feedback loop between TRIM32 and mTOR/p70S6K pathway. To conclude, this work preliminarily explored the role of TRIM32 in the malignant properties of pancreatic cancer cells and evaluated the possibility of targeting TRIM32 to enhance effectiveness of gemcitabine, thereby providing a novel therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Bo Zhang
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - You-You Yan
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yang-Qin Gu
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fei Teng
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xu Lin
- Department of Thoracic Surgery, School of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xing-Lu Zhou
- Hangzhou Hezheng Pharmaceutical Co. Ltd, Hangzhou, Zhejiang, China
| | - Jin-Xin Che
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Xiao-Wu Dong
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.,Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, China
| | - Li-Xin Zhou
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Neng-Ming Lin
- College of Pharmaceutical Sciences, Hangzhou First People's Hospital, Zhejiang Chinese Medical University, Hangzhou, China.,Department of Clinical Pharmacology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Cancer Center, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Graca FA, Sheffield N, Puppa M, Finkelstein D, Hunt LC, Demontis F. A large-scale transgenic RNAi screen identifies transcription factors that modulate myofiber size in Drosophila. PLoS Genet 2021; 17:e1009926. [PMID: 34780463 PMCID: PMC8629395 DOI: 10.1371/journal.pgen.1009926] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 11/29/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Myofiber atrophy occurs with aging and in many diseases but the underlying mechanisms are incompletely understood. Here, we have used >1,100 muscle-targeted RNAi interventions to comprehensively assess the function of 447 transcription factors in the developmental growth of body wall skeletal muscles in Drosophila. This screen identifies new regulators of myofiber atrophy and hypertrophy, including the transcription factor Deaf1. Deaf1 RNAi increases myofiber size whereas Deaf1 overexpression induces atrophy. Consistent with its annotation as a Gsk3 phosphorylation substrate, Deaf1 and Gsk3 induce largely overlapping transcriptional changes that are opposed by Deaf1 RNAi. The top category of Deaf1-regulated genes consists of glycolytic enzymes, which are suppressed by Deaf1 and Gsk3 but are upregulated by Deaf1 RNAi. Similar to Deaf1 and Gsk3 overexpression, RNAi for glycolytic enzymes reduces myofiber growth. Altogether, this study defines the repertoire of transcription factors that regulate developmental myofiber growth and the role of Gsk3/Deaf1/glycolysis in this process.
Collapse
Affiliation(s)
- Flavia A. Graca
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Natalie Sheffield
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Melissa Puppa
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Liam C. Hunt
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
| | - Fabio Demontis
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
19
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|