1
|
Eskandari A, Leow TC, Rahman MBA, Oslan SN. Recent insight into the advances and prospects of microbial lipases and their potential applications in industry. Int Microbiol 2024; 27:1597-1631. [PMID: 38489100 DOI: 10.1007/s10123-024-00498-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
Enzymes play a crucial role in various industrial sectors. These biocatalysts not only ensure sustainability and safety but also enhance process efficiency through their unique specificity. Lipases possess versatility as biocatalysts and find utilization in diverse bioconversion reactions. Presently, microbial lipases are gaining significant focus owing to the rapid progress in enzyme technology and their widespread implementation in multiple industrial procedures. This updated review presents new knowledge about various origins of microbial lipases, such as fungi, bacteria, and yeast. It highlights both the traditional and modern purification methods, including precipitation and chromatographic separation, the immunopurification technique, the reversed micellar system, the aqueous two-phase system (ATPS), and aqueous two-phase flotation (ATPF), moreover, delves into the diverse applications of microbial lipases across several industries, such as food, vitamin esters, textile, detergent, biodiesel, and bioremediation. Furthermore, the present research unveils the obstacles encountered in employing lipase, the patterns observed in lipase engineering, and the application of CRISPR/Cas genome editing technology for altering the genes responsible for lipase production. Additionally, the immobilization of microorganisms' lipases onto various carriers also contributes to enhancing the effectiveness and efficiencies of lipases in terms of their catalytic activities. This is achieved by boosting their resilience to heat and ionic conditions (such as inorganic solvents, high-level pH, and temperature). The process also facilitates the ease of recycling them and enables a more concentrated deposition of the enzyme onto the supporting material. Consequently, these characteristics have demonstrated their suitability for application as biocatalysts in diverse industries.
Collapse
Affiliation(s)
- Azadeh Eskandari
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | - Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia
| | | | - Siti Nurbaya Oslan
- Enzyme and Microbial Technology Research Centre, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
- Enzyme Technology and X-ray Crystallography Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, UPM, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
de S Lira RK, do Nascimento MA, Lima MT, Georgii ADNP, Leão RAC, de Souza ROMA, Wojcieszak R, Leite SGF, Ivaldo IJ. Continuous Flow Synthesis of Hexyl Laurate Using Immobilized Thermomyces Lanuginosus Lipase from Residual Babassu Mesocarp. Chempluschem 2024; 89:e202400442. [PMID: 39105675 DOI: 10.1002/cplu.202400442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/07/2024]
Abstract
Brazil has one of the greatest biodiversities on the planet, where various crops play a strategic role in the country's economy. Among the highly appreciated biomasses is babassu, whose oil extraction generates residual babassu mesocarp (BM), which still needs new strategies for valorization. This work aimed to use BM as a support for the immobilization of Thermomyces lanuginosus lipase (TLL) in an 8.83 mL packed-bed reactor, followed by its application as a biocatalyst for the synthesis of hexyl laurate in an integrated process. Initially, the percolation of a solution containing 5 mg of TLL at 25 °C and flows ranging from 1.767 to 0.074 mL min-1 was investigated, where at the lowest flow rate tested (residence time of 2 h), it was possible to obtain an immobilized derivative with hydrolytic activity of 504.7 U g-1 and 31.7 % of recovered activity. Subsequent studies of treatment with n-hexane, as well as the effect of temperature on the immobilization process, were able to improve the activities of the final biocatalyst BM-TLLF, achieving a final hydrolysis activity of 7023 U g-1 and esterification activity of 430 U ⋅ g-1 against 142 U g-1 and 113.5 U g-1 respectively presented by the commercial TLIM biocatalyst. Desorption studies showed that the TL IM has 18 mg of protein per gram of support, compared to 4.92 mg presented by BM-TLL. Both biocatalysts were applied to synthesize hexyl laurate, achieving 98 % conversion at 40 °C within 2 h. Notably, BM-TLLF displayed exceptional recyclability, maintaining catalytic efficiency over 12 cycles. This reflects a productivity of 180 mg of product ⋅ h-1 U-1 of the enzyme, surpassing 46 mg h-1 U-1 obtained for TLIM. These results demonstrate the efficacy of continuous flow technology in creating a competitive and integrated process offering an exciting alternative for the valorization of residual lignocellulosic biomass.
Collapse
Affiliation(s)
- Regiane K de S Lira
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, 21941909, Rio de Janeiro, Brazil
| | - Marcelo A do Nascimento
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, 21941910, Rio de Janeiro, Brazil
| | - Marcelo T Lima
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, 21941909, Rio de Janeiro, Brazil
| | - Ana Débora N P Georgii
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, 21941909, Rio de Janeiro, Brazil
| | - Raquel A C Leão
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, 21941910, Rio de Janeiro, Brazil
| | - Rodrigo O M A de Souza
- Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, 21941910, Rio de Janeiro, Brazil
| | - Robert Wojcieszak
- Univ. Lille, CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Lille, France
- Université de Lorraine, CNRS, L2CM UMR 7053, F-54000, Nancy, France
| | - Selma G F Leite
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, 21941909, Rio de Janeiro, Brazil
| | - Itabaiana Jr Ivaldo
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, 21941909, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Chiappini V, Conti C, Astolfi ML, Girelli AM. Characteristic study of Candida rugosa lipase immobilized on lignocellulosic wastes: effect of support material. Bioprocess Biosyst Eng 2024:10.1007/s00449-024-03096-z. [PMID: 39400575 DOI: 10.1007/s00449-024-03096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/03/2024] [Indexed: 10/15/2024]
Abstract
For the first time is reported the comparison of solid biocatalysts derived from Candida rugosa lipase (CRL) immobilized on different lignocellulosic wastes (rice husk, brewer's spent grain, hemp tea waste, green tea waste, vine bark, and spent coffee grounds) focusing on the characterization of these materials and their impact on the lipase-support interaction. The wastes were subjected to meticulous characterization by ATR-FTIR, BET, and SEM analysis, besides lignin content and hydrophobicity determination. Investigating parameters influencing immobilization performance revealed the importance of morphology, textural properties, and hydrophobic interactions revealed the importance of morphology, textural properties and especially hydrophobic interactions which resulted in positive correlations between surface hydrophobicity and lipase immobilization efficiency. Hemp tea waste and spent coffee grounds demonstrated superior immobilization performances (7.20 U/g and 8.74 U/g immobilized activity, 102.3% and 33.5% efficiency, 13.4% and 15.4% recovery, respectively). Moreover, they demonstrated good temporal stability (100% and 92% residual activity after 120 days, respectively) and retained 100% of their immobilized activity after five reuses in the hydrolysis of p-nitrophenyl palmitate in hexane. In addition, the study of enzymatic desorption caused by ionic strength and detergent treatments indicated mixed hydrophobic and electrostatic interactions in rice husk, vine bark, and spent coffee grounds supports, while hemp tea waste and green tea waste were dominated by hydrophobic interactions.
Collapse
Affiliation(s)
- Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Camilla Conti
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Maria Luisa Astolfi
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy
| | - Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P.Le A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
4
|
Serbent MP, Magario I, Saux C. Immobilizing white-rot fungi laccase: Toward bio-derived supports as a circular economy approach in organochlorine removal. Biotechnol Bioeng 2024; 121:434-455. [PMID: 37990982 DOI: 10.1002/bit.28591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/23/2023] [Accepted: 10/28/2023] [Indexed: 11/23/2023]
Abstract
Despite their high persistence in the environment, organochlorines (OC) are widely used in the pharmaceutical industry, in plastics, and in the manufacture of pesticides, among other applications. These compounds and the byproducts of their decomposition deserve attention and efficient proposals for their treatment. Among sustainable alternatives, the use of ligninolytic enzymes (LEs) from fungi stands out, as these molecules can catalyze the transformation of a wide range of pollutants. Among LEs, laccases (Lac) are known for their efficiency as biocatalysts in the conversion of organic pollutants. Their application in biotechnological processes is possible, but the enzymes are often unstable and difficult to recover after use, driving up costs. Immobilization of enzymes on a matrix (support or solid carrier) allows recovery and stabilization of this catalytic capacity. Agricultural residual biomass is a passive environmental asset. Although underestimated and still treated as an undesirable component, residual biomass can be used as a low-cost adsorbent and as a support for the immobilization of enzymes. In this review, the adsorption capacity and immobilization of fungal Lac on supports made from residual biomass, including compounds such as biochar, for the removal of OC compounds are analyzed and compared with the use of synthetic supports. A qualitative and quantitative comparison of the reported results was made. In this context, the use of peanut shells is highlighted in view of the increasing peanut production worldwide. The linkage of methods with circular economy approaches that can be applied in practice is discussed.
Collapse
Affiliation(s)
- Maria Pilar Serbent
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
- Programa de Pós-Graduação em Ciências Ambientais (PPGCAMB), Universidade do Estado de Santa Catarina, Lages, Santa Catarina, Brasil
| | - Ivana Magario
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos y Química Aplicada (IPQA), Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba (CONICET), Córdoba, Argentina
| | - Clara Saux
- Centro de Investigación y Tecnología Química (CITeQ), Facultad Regional Córdoba, Universidad Tecnológica Nacional (CONICET), Córdoba, Argentina
| |
Collapse
|
5
|
Girelli AM, Chiappini V. Renewable, sustainable, and natural lignocellulosic carriers for lipase immobilization: A review. J Biotechnol 2023; 365:29-47. [PMID: 36796453 DOI: 10.1016/j.jbiotec.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/26/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
It is well-known that enzymes are molecules particularly susceptible to pH and temperature variations. Immobilization techniques may overcome this weakness besides improving the reusability of the biocatalysts. Given the strong push toward a circular economy, the use of natural lignocellulosic wastes as supports for enzyme immobilization has been increasingly attractive in recent years. This fact is mainly due to their high availability, low costs, and the possibility of reducing the environmental impact that can occur when they are improperly stored. In addition, they have physical and chemical characteristics suitable for enzyme immobilization (large surface area, high rigidity, porosity, reactive functional groups, etc.). This review aims to guide readers and provide them with the tools necessary to select the most suitable methodology for lipase immobilization on lignocellulosic wastes. The importance and the characteristics of an increasingly interesting enzyme, such as lipase, and the advantages and disadvantages of the different immobilization methods will be discussed. The various kinds of lignocellulosic wastes and the processing required to make them suitable as carriers will be also reported.
Collapse
Affiliation(s)
- Anna Maria Girelli
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy.
| | - Viviana Chiappini
- Department of Chemistry, Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
6
|
Bio-Based Materials versus Synthetic Polymers as a Support in Lipase Immobilization: Impact on Versatile Enzyme Activity. Catalysts 2023. [DOI: 10.3390/catal13020395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
To improve enzyme stability, the immobilization process is often applied. The choice of a support on which the enzymes are adsorbed plays a major role in enhancing biocatalysts’ properties. In this study, bio-based (i.e., chitosan, coffee grounds) and synthetic (i.e., Lewatit VP OC 1600) supports were used in the immobilization of lipases of various microbial origins (yeast (Yarrowia lipolytica) and mold (Aspergillus oryzae)). The results confirmed that the enzyme proteins had been adsorbed on the surface of the selected carriers, but not all of them revealed comparably high catalytic activity. Immobilized CALB (Novozym 435) was used as a commercial reference biocatalyst. The best hydrolytic activity (higher than that of CALB) was observed for Novozym 51032 (lipase solution of A. oryzae) immobilized on Lewatit VP OC 1600. In terms of synthetic activity, there were only slight differences between the applied carriers for A. oryzae lipase, and the highest measures were obtained for coffee grounds. All of the biocatalysts had significantly lower activity in the synthesis reactions than the reference catalyst.
Collapse
|
7
|
Immobilization of lipase on spent coffee grounds by physical and covalent methods: a comparison study. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
8
|
Kumar A, Verma V, Dubey VK, Srivastava A, Garg SK, Singh VP, Arora PK. Industrial applications of fungal lipases: a review. Front Microbiol 2023; 14:1142536. [PMID: 37187537 PMCID: PMC10175645 DOI: 10.3389/fmicb.2023.1142536] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 05/17/2023] Open
Abstract
Fungal lipases (triacylglycerol acyl hydrolases EC 3.1.1.3) are significant industrial enzymes and have several applications in a number of industries and fields. Fungal lipases are found in several species of fungi and yeast. These enzymes are carboxylic acid esterases, categorized under the serine hydrolase family, and do not require any cofactor during the catalyzing of the reactions. It was also noticed that processes including the extraction and purification of lipases from fungi are comparatively easier and cheaper than other sources of lipases. In addition, fungal lipases have been classified into three chief classes, namely, GX, GGGX, and Y. Fungal lipases have applications not only in the hydrolysis of fats and oils (triglycerides) but are also involved in synthetic reactions such as esterification, acidolysis, alcoholysis, interesterification, and aminolysis. The production and activity of fungal lipases are highly affected by the carbon source, nitrogen source, temperature, pH, metal ions, surfactants, and moisture content. Therefore, fungal lipases have several industrial and biotechnological applications in many fields such as biodiesel production, ester synthesis, production of biodegradable biopolymers, formulations of cosmetics and personal care products, detergent manufacturing, degreasing of leather, pulp and paper production, textile industry, biosensor development, and drug formulations and as a diagnostic tool in the medical sector, biodegradation of esters, and bioremediation of wastewater. The immobilization of fungal lipases onto different carriers also helps in improving the catalytic activities and efficiencies of lipases by increasing thermal and ionic stability (in organic solvents, high pH, and temperature), being easy to recycle, and inducing the volume-specific loading of the enzyme onto the support, and thus, these features have proved to be appropriate for use as biocatalysts in different sectors.
Collapse
Affiliation(s)
- Ashish Kumar
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vinita Verma
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Vimal Kumar Dubey
- College of Agriculture Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Sanjay Kumar Garg
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Pankaj Kumar Arora
- Department of Environmental Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
- *Correspondence: Pankaj Kumar Arora
| |
Collapse
|
9
|
Tailoring Lignin-Based Spherical Particles as a Support for Lipase Immobilization. Catalysts 2022. [DOI: 10.3390/catal12091031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lignin-based spherical particles have recently gained popularity due to their characteristic and the usage of biopolymeric material. In this study, lignin-based spherical particles were prepared using choline chloride at different pH values, ranging from 2 to 10. Their dispersive, microstructural, and physicochemical properties were studied by a variety of techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential analysis. The best results were obtained for the particles prepared at pH 5 and 7, which had a spherical shape without a tendency to form aggregates and agglomerates. The lignin-based spherical particles were used for the immobilization of lipase, a model enzyme capable of catalyzing a wide range of transformations. It was shown that the highest relative activity of immobilized lipase was obtained after 24 h of immobilization at 30 °C and pH 7, using 100 mg of the support. Moreover, the immobilized lipase exhibited enhanced stability under harsh process conditions, and demonstrated high reusability, up to 87% after 10 cycles, depending on the support used. In the future, the described approach to enzyme immobilization based on lignin spheres may play a significant role in the catalytic synthesis of organic and fine chemicals, with high utility value.
Collapse
|
10
|
dos Santos PM, Baruque JR, de Souza Lira RK, Leite SGF, do Nascimento RP, Borges CP, Wojcieszak R, Itabaiana I. Corn Cob as a Green Support for Laccase Immobilization-Application on Decolorization of Remazol Brilliant Blue R. Int J Mol Sci 2022; 23:ijms23169363. [PMID: 36012620 PMCID: PMC9409158 DOI: 10.3390/ijms23169363] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The high demand for food and energy imposed by the increased life expectancy of the population has driven agricultural activity, which is reflected in the larger quantities of agro-industrial waste generated, and requires new forms of use. Brazil has the greatest biodiversity in the world, where corn is one of the main agricultural genres, and where over 40% of the waste generated is from cobs without an efficient destination. With the aim of the valorization of these residues, we proposed to study the immobilization of laccase from Aspergillus spp. (LAsp) in residual corn cob and its application in the degradation of Remazol Brilliant Blue R (RBBR) dye. The highest yields in immobilized protein (75%) and residual activity (40%) were obtained at pH 7.0 and an enzyme concentration of 0.1 g.mL−1, whose expressed enzyme activity was 1854 U.kg−1. At a temperature of 60 °C, more than 90% of the initial activity present in the immobilized biocatalyst was maintained. The immobilized enzyme showed higher efficiency in the degradation (64%) of RBBR dye in 48 h, with improvement in the process in 72 h (75%). The new biocatalyst showed operational efficiency during three cycles, and a higher degradation rate than the free enzyme, making it a competitive biocatalyst and amenable to industrial applications.
Collapse
Affiliation(s)
- Priscila M. dos Santos
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Julia R. Baruque
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Regiane K. de Souza Lira
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Selma G. F. Leite
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Rodrigo P. do Nascimento
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
| | - Cristiano P. Borges
- COPPE/Chemical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro 21941-972, Brazil
| | - Robert Wojcieszak
- CNRS, Centrale Lille, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, University Lille, University Artois, F-59000 Lille, France
| | - Ivaldo Itabaiana
- Department of Biochemical Engineering, School of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro 21941-909, Brazil
- CNRS, Centrale Lille, UMR 8181—UCCS—Unité de Catalyse et Chimie du Solide, University Lille, University Artois, F-59000 Lille, France
- Correspondence: ; Tel.: +55-2139-387-580
| |
Collapse
|
11
|
Zhang Z, Lee WJ, Sun X, Wang Y. Enzymatic interesterification of palm olein in a continuous packed bed reactor: Effect of process parameters on the properties of fats and immobilized Thermomyces lanuginosus lipase. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|