1
|
Isaguliants M, Zhitkevich A, Petkov S, Gorodnicheva T, Mezale D, Fridrihsone I, Kuzmenko Y, Kostyushev D, Kostyusheva A, Gordeychuk I, Bayurova E. Enzymatic activity of HIV-1 protease defines migration of tumor cells in vitro and enhances their metastatic activity in vivo. Biochimie 2025; 228:32-43. [PMID: 39128490 DOI: 10.1016/j.biochi.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Overexpression of aspartic proteases, as cathepsin D, is an independent marker of poor prognosis in breast cancer, correlated with the incidence of clinical metastasis. We aimed to find if HIV-1 aspartic protease (PR) can play a similar role. Murine adenocarcinoma 4T1luc2 cells were transduced with lentivirus encoding inactivated drug-resistant PR, generating subclones PR20.1 and PR20.2. Subclones were assessed for production of reactive oxygen species (ROS), expression of epithelial-mesenchymal transition (EMT) factors, and in vitro migratory activity in the presence or absence of antioxidant N-acetyl cysteine and protease inhibitors. Tumorigenic activity was evaluated by implanting cells into BALB/c mice and following tumor growth by calipering and bioluminescence imaging in vivo, and metastases, by organ imaging ex vivo. Both subclones expressed PR mRNA, and PR20.2, also the protein detected by Western blotting. PR did not induce production of ROS, and had no direct effect on cell migration rate, however, treatment with inhibitors of drug-resistant PR suppressed the migratory activity of both subclones. Furthermore, expression of N-cadherin and Vimentin in PR20.2 cells and their migration were enhanced by antioxidant treatment. Sensitivity of in vitro migration to protease inhibitors and to antioxidant, known to restore PR activity, related the effects to the enzymatic activity of PR. In vivo, PR20.2 cells demonstrated higher tumorigenic and metastatic activity than PR20.1 or parental cells. Thus, HIV-1 protease expressed in breast cancer cells determines their migration in vitro and metastatic activity in vivo. This effect may aggravate clinical course of cancers in people living with HIV-1.
Collapse
Affiliation(s)
- M Isaguliants
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - A Zhitkevich
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - S Petkov
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - T Gorodnicheva
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997, Moscow, Russia.
| | - D Mezale
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - I Fridrihsone
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden.
| | - Y Kuzmenko
- Engelhardt Institute of Molecular Biology, Academy of Sciences of the Russian Federation, 119991, Moscow, Russia.
| | - D Kostyushev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - A Kostyusheva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, Sechenov University, 119991, Moscow, Russia.
| | - I Gordeychuk
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| | - E Bayurova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden; Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products of Russian Academy of Sciences, 108819, Moscow, Russia.
| |
Collapse
|
2
|
Eche S, Kumar A, Sonela N, Gordon ML. Binding kinetics of highly mutated HIV-1 subtype C protease inhibition by Lopinavir and Darunavir in the face of altered conformational dynamics. J Biomol Struct Dyn 2024:1-16. [PMID: 39697065 DOI: 10.1080/07391102.2024.2426078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 04/27/2024] [Indexed: 12/20/2024]
Abstract
Highly mutated HIV-1 protease (PR) compromises the efficacy of lopinavir (LPV) and darunavir (DRV) used to formulate salvage regimens in HIV/AIDS management. Here, we report the kinetics of inhibition of lopinavir (LPV) and darunavir (DRV) on highly mutated South African HIV-1 subtype C PR obtained from clinical isolates. The wild-type and mutant South African HIV-1 subtype C PR were cloned and purified. Enzyme inhibition assays and fluorescence spectroscopy were utilized to determine the binding kinetics of LPV and DRV with the wild-type and mutant HIV-1 PR variants. Like DRV, the results of this study show that LPV has a mixed-type inhibition mechanism, which indicates the possibility of a second binding site on HIV-1 PR. Both LPV and DRV poorly inhibited the highly mutated HIV-1 PR variants and had a markedly increased dissociation rate cons bound to the mutant variants compared to the wild type. The fast dissociation of these inhibitors translated into a short residence time of the inhibitor bound to the mutant HIV-1 PR variants. Fluorescent spectroscopy showed that the changes in the tertiary structure of the mutant HIV-1 PR variants were associated with a more open conformation. This open conformation was associated with altered conformational dynamics, which may have resulted in the loss of tight binding of LPV and DRV. This study's findings provide insight into the mechanism of resistance to LPV and DRV by highly mutated HIV-1 PR and provide information supporting the use of binding kinetics measurement in understanding HIV-1 PR inhibitor drug resistance evolution.
Collapse
Affiliation(s)
- Simeon Eche
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ajit Kumar
- Discipline of Microbiology, School of Life Sciences, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| | - Nelson Sonela
- Chantal Biya International Reference Center for Research on the Management and Prevention of HIV/AIDS (CIRCB), Yaoundé, Cameroon
| | - Michelle L Gordon
- Discipline of Virology, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
3
|
Mokhantso T, Sherry D, Worth R, Pandian R, Achilonu I, Sayed Y. Contrasting the effect of hinge region insertions and non-active site mutations on HIV protease-inhibitor interactions: Insights from altered flap dynamics. J Mol Graph Model 2024; 133:108850. [PMID: 39226791 DOI: 10.1016/j.jmgm.2024.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
HIV-1 protease (PR) enzyme is a viable antiretroviral drug target due to its crucial role in HIV maturation. Over many decades, the HIV-1 PR enzyme has exhibited mutations brought on by drug pressure and error-prone nature of HIV-1 reverse transcriptase. Non-active site mutations have played a pivotal role in drug resistance; however, their mechanism of action has not been fully elucidated. We investigated how non-active site mutations affect the conformational stability and drug binding ability of HIV-1 PR. In light of this, we studied a novel HIV-1 subtype C protease variant containing an insertion of valine (↑V) in the hinge region. We analysed the mutations in the presence and absence of ten background mutations. Molecular dynamics simulations revealed that both with and without the background mutations, the PR exhibited increased flexibility of hinge, flaps and fulcrum regions. This allowed the PR to adopt a wider flap conformation when in complex with several inhibitors. Additionally, the simulations revealed that the protease inhibitors (PIs) could not bring the mutated variant proteases into a stable, closed conformation, resulting in increased solvent exposure of the inhibitors. Together, these results suggest that the mutations decrease the favourability of binding by altering the dynamics of the flap regions. Notably, the insertion mutation increased PR hinge flexibility and the introduction of background mutations compensated for this by stabilising the cantilever and hinge regions. Together, these findings provide insight into how non-active site mutations affect PR conformational dynamics in critical areas of the PR thus impacting on drug binding capacity and potentially contributing to drug resistance.
Collapse
Affiliation(s)
- Tshele Mokhantso
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Dean Sherry
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Roland Worth
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Ramesh Pandian
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, 2050, South Africa.
| |
Collapse
|
4
|
Sankaran S, Krishnan SR, Sayed Y, Gromiha MM. Mechanism of drug resistance in HIV-1 protease subtype C in the presence of Atazanavir. Curr Res Struct Biol 2024; 7:100132. [PMID: 38435053 PMCID: PMC10907180 DOI: 10.1016/j.crstbi.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
AIDS is one of the deadliest diseases in the history of humankind caused by HIV. Despite the technological development, curtailing the viral infection inside human host still remains a challenge. Therapies such as HAART uses a combination of drugs to inhibit the viral activity. One of the important targets includes HIV protease and inhibiting its activity will minimize the production of mature structural proteins. However, the genetic diversity and the occurrence of drug resistant mutations adds complexity to effective drug design. In this study, we aimed at understanding the drug binding mechanism of one such subtype, namely subtype C and its insertion variant L38HL. We performed multiple molecular dynamics simulations along with binding free energy analysis of wild-type and L38HL bound to Atazanavir (ATV). From the analysis, we revealed that the insertion alters the hydrogen bond and hydrophobic interaction networks. The alterations in the interaction networks increase flexibility at the hinge-fulcrum interface. Further, the effects of these changes affect flap tip curling. Moreover, the changes in the hinge-fulcrum-cantilever interface alters the concerted motion of the functional regions leading to change in the direction of flap movement thus causing a subtle change in the active site volume. Additionally, formation of intramolecular hydrogen bonds in the ATV docked to L38HL restricted the movement of R1 and R2 groups thereby altering the interactions. Overall, the changes in the flexibility of flap together with the changes in the active site volume and compactness of the ligand provide insights for increased binding affinity of ATV with L38HL.
Collapse
Affiliation(s)
- S.V. Sankaran
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Sowmya R. Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
5
|
Venkatachalam S, Murlidharan N, Krishnan SR, Ramakrishnan C, Setshedi M, Pandian R, Barh D, Tiwari S, Azevedo V, Sayed Y, Gromiha MM. Understanding Drug Resistance of Wild-Type and L38HL Insertion Mutant of HIV-1 C Protease to Saquinavir. Genes (Basel) 2023; 14:533. [PMID: 36833460 PMCID: PMC9957153 DOI: 10.3390/genes14020533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is one of the most challenging infectious diseases to treat on a global scale. Understanding the mechanisms underlying the development of drug resistance is necessary for novel therapeutics. HIV subtype C is known to harbor mutations at critical positions of HIV aspartic protease compared to HIV subtype B, which affects the binding affinity. Recently, a novel double-insertion mutation at codon 38 (L38HL) was characterized in HIV subtype C protease, whose effects on the interaction with protease inhibitors are hitherto unknown. In this study, the potential of L38HL double-insertion in HIV subtype C protease to induce a drug resistance phenotype towards the protease inhibitor, Saquinavir (SQV), was probed using various computational techniques, such as molecular dynamics simulations, binding free energy calculations, local conformational changes and principal component analysis. The results indicate that the L38HL mutation exhibits an increase in flexibility at the hinge and flap regions with a decrease in the binding affinity of SQV in comparison with wild-type HIV protease C. Further, we observed a wide opening at the binding site in the L38HL variant due to an alteration in flap dynamics, leading to a decrease in interactions with the binding site of the mutant protease. It is supported by an altered direction of motion of flap residues in the L38HL variant compared with the wild-type. These results provide deep insights into understanding the potential drug resistance phenotype in infected individuals.
Collapse
Affiliation(s)
- Sankaran Venkatachalam
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Nisha Murlidharan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sowmya R. Krishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - C. Ramakrishnan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mpho Setshedi
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Ramesh Pandian
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Debmalya Barh
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
- Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
| | - Sandeep Tiwari
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
- Institute of Biology, Federal University of Bahia, Salvador, BA 40110-909, Brazil
- Institute of Health Sciences, Federal University of Bahia, Salvador, BA 40110-909, Brazil
| | - Vasco Azevedo
- Department of Genetics, Ecology, and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte 31270-901, Brazil
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - M. Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
6
|
Wong-Sam A, Wang YF, Kneller DW, Kovalevsky AY, Ghosh AK, Harrison RW, Weber IT. HIV-1 protease with 10 lopinavir and darunavir resistance mutations exhibits altered inhibition, structural rearrangements and extreme dynamics. J Mol Graph Model 2022; 117:108315. [PMID: 36108568 PMCID: PMC10091457 DOI: 10.1016/j.jmgm.2022.108315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/21/2022] [Indexed: 01/14/2023]
Abstract
Antiretroviral drug resistance is a therapeutic obstacle for people with HIV. HIV protease inhibitors darunavir and lopinavir are recommended for resistant infections. We characterized a protease mutant (PR10x) derived from a highly resistant clinical isolate including 10 mutations associated with resistance to lopinavir and darunavir. Compared to the wild-type protease, PR10x exhibits ∼3-fold decrease in catalytic efficiency and Ki values of 2-3 orders of magnitude worse for darunavir, lopinavir, and potent investigational inhibitor GRL-519. Crystal structures of the mutant were solved in a ligand-free form and in complex with GRL-519. The structures show altered interactions in the active site, flap-core interface, hydrophobic core, hinge region, and 80s loop compared to the corresponding wild-type protease structures. The ligand-free crystal structure exhibits a highly curled flap conformation which may amplify drug resistance. Molecular dynamics simulations performed for 1 μs on ligand-free dimers showed extremely large fluctuations in the flaps for PR10x compared to equivalent simulations on PR with a single L76V mutation or wild-type protease. This analysis offers insight about the synergistic effects of mutations in highly resistant variants.
Collapse
Affiliation(s)
- Andres Wong-Sam
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Yuan-Fang Wang
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA
| | - Daniel W Kneller
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrey Y Kovalevsky
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Robert W Harrison
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA; Department of Computer Science, Georgia State University, Atlanta, GA, 30303, USA
| | - Irene T Weber
- Department of Biology, Georgia State University, Atlanta, GA, 30303, USA; Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| |
Collapse
|