1
|
Jiang SS, Li Q, Wang T, Huang YT, Luo TT, Liu W. The reduction effect on sensitization of sesame protein Ses i 3 of ultrasound-assisted glycation treatment through modulation of T cell differentiation. Int J Biol Macromol 2025; 307:142112. [PMID: 40089237 DOI: 10.1016/j.ijbiomac.2025.142112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
This study aimed to investigate the potential reduction on the sensitization of sesame protein Ses i 3 through ultrasound-assisted glycation. Ses i 3 was extracted and purified using an immunoaffinity column, and the allergenicity changes of Ses i 3 were assessed by a comprehensive strategy, and T cell polarization was also assessed in vivo. Results showed ultrasound-assisted glycation treated Ses i 3 was more easily digestible; and the cell degranulation model showed the histamine, tryptase, and β-hexosaminidase induced by ultrasound-assisted glycation treatment were significantly decreased; besides, the serological results demonstrated that a notable decrease in the binding ability of immunoglobulin E (IgE) and IgG; finally, a BALB/c mice model demonstrated an alleviation of allergic responses induced by ultrasonic-assisted glycation treatment. Meanwhile, the results in vivo also found that ultrasonic-assisted glycation treated Ses i 3 induced enhanced Helper T cell (TH) 1 cell differentiation while weakening TH2 cell differentiation, promoting TH1/TH2 balance polarization. Additionally, it induced stronger regulatory T (Treg) cell differentiation, and suppressed TH17 cell differentiation, promoting Treg/TH17 balance. This study demonstrated that the sensitization of Ses i 3 was reduced after ultrasonic-assisted glycation treatment, and this effect was associated with the modulation of T cell differentiation.
Collapse
Affiliation(s)
- Song-Song Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China; Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, Jiangsu 225127, PR China.
| | - Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Yu-Tong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Ting-Ting Luo
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Weilin Liu
- Qingdao Municipal Hospital Group, Qindao, Shandong 266000, China
| |
Collapse
|
2
|
Khwaza V, Aderibigbe BA. Antibacterial Activity of Selected Essential Oil Components and Their Derivatives: A Review. Antibiotics (Basel) 2025; 14:68. [PMID: 39858354 PMCID: PMC11761885 DOI: 10.3390/antibiotics14010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 01/04/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Essential oils (EOs) are gaining ground and have been intensively studied due to their widespread use in the pharmaceutical, food, and cosmetics industries. The essential components of EOs have been recognized for diverse therapeutic activities and have gained significant attention for their potential antibacterial activities. Despite the popularity of EOs and potent biological properties, their bioactive components and their derivatives are still not comprehensively characterized. This review explores the antibacterial efficacy of selected EO components and their derivatives, focusing on monoterpenes chosen (i.e., carvacrol, menthol, and thymol) and phenylpropanoids (i.e., cinnamaldehyde and eugenol). Furthermore, this review highlights recent advancements in developing derivatives of these EO components, which have shown improved antibacterial activity with reduced toxicity. By summarizing recent studies, this review reveals the potential of these natural compounds and their derivatives as promising candidates for pharmaceuticals, food preservation, and as alternatives to synthetic antibiotics in combating bacterial resistance.
Collapse
Affiliation(s)
- Vuyolwethu Khwaza
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| | - Blessing A. Aderibigbe
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, Alice Campus, Alice 5700, South Africa
| |
Collapse
|
3
|
Imbrea IM, Osiceanu M, Hulea A, Suleiman MA, Popescu I, Floares (Oarga) D, Onisan E, Neacșu AG, Popescu CA, Hulea C, Pop G, Niță S, Imbrea F, Obistioiu D. Chemical and Biological Properties of Different Romanian Populations of Hyssopus officinalis Correlated via Molecular Docking. PLANTS (BASEL, SWITZERLAND) 2024; 13:3259. [PMID: 39599468 PMCID: PMC11598396 DOI: 10.3390/plants13223259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/05/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
This study compares three Romanian Hyssopus officinalis species-H. officinalis f. ruber (HOR), H. officinalis f. albus (HOA), and H. officinalis f. cyaneus (HOC)-evaluating their chemical composition and biological activities, specifically protein denaturation, haemolysis inhibition, and antibacterial effects. Chemical profiles were determined using Gas Chromatography-Mass Spectrometry (GC-MS). The species were cultivated at two distinct locations: the Didactic and Experimental Station DESUSVT and the Agricultural Research and Development Station Lovrin (ARDSL). This study investigates the correlation between chemical composition, biological activities, and local climate data at each site. The results show significant variations in chemical profiles, with species and cultivation location influencing the biological activities. H. officinalis f. albus (HOA) exhibited the strongest antimicrobial activity, particularly against Gram-positive bacteria. The molecular docking analysis highlighted key compounds, such as cyclohexene,4-isopropenyl-1-methoxymethoxymethyl and elemol, with binding solid affinities to microbial and inflammatory proteins. This study provides valuable insights into the chemical and biological properties of Hyssopus officinalis, emphasising its potential in combating microbial infections, protein denaturation, and haemolysis inhibition.
Collapse
Affiliation(s)
- Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (I.M.I.); (E.O.)
| | - Magdalena Osiceanu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Anca Hulea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Mukhtar Adeiza Suleiman
- Department of Biochemistry, Faculty of Life Science, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Doris Floares (Oarga)
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Emilian Onisan
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (I.M.I.); (E.O.)
| | - Alina-Georgeta Neacșu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Calin Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Georgeta Pop
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Simona Niță
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| | - Diana Obistioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (M.O.); (I.P.); (A.-G.N.); (C.A.P.); (G.P.); (S.N.); (F.I.); (D.O.)
| |
Collapse
|
4
|
Appel K, Rose T, Zimmermann C, Günnewich N. In Vitro Anti-inflammatory Effects of Larch Turpentine, Turpentine Oil, Eucalyptus Oil, and Their Mixture as Contained in a Marketed Ointment. PLANTA MEDICA 2024; 90:1023-1029. [PMID: 39260387 PMCID: PMC11614573 DOI: 10.1055/a-2388-7527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/01/2024] [Indexed: 09/13/2024]
Abstract
An ointment containing larch turpentine, turpentine oil, and eucalyptus oil has been used for almost a century for the symptomatic treatment of mild, localized, purulent inflammations of the skin. Its clinical efficacy in the treatment of skin infections has been shown in clinical trials, but the mode of action of the active ingredients on inflammation is not known. We studied the anti-inflammatory properties of the active ingredients of the ointment and their mixture in a human monocyte cell model, in which the cells were stimulated with lipopolysaccharide and incubated with the test substances. The cytotoxic threshold of each test substance and the mixture was identified using the alamarBlue assay, and their anti-inflammatory activity was assessed by measuring the release of interleukins IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α. Cell toxicity was observed at a mixture concentration of 10 µg/mL. All immunological assays were carried out at nontoxic concentrations. Larch turpentine decreased IL-1β, monocyte chemoattractant protein-1, and prostaglandin E2 release at a concentration of 3.9 µg/mL and TNF-α at concentrations > 1.95 µg/mL, whereas eucalyptus oil and turpentine oil had no relevant inhibitory effects. The mixture dose-dependently inhibited IL-1β, IL-6, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α release at concentrations > 1 µg/mL. IL-8 release was only marginally affected. The anti-inflammatory activity of the herbal ingredients and their mixture was confirmed in this model. This effect seems to be mediated mainly by larch turpentine, with turpentine oil and eucalyptus oil exerting an additive or possibly synergistic function.
Collapse
Affiliation(s)
- Kurt Appel
- VivaCell Biotechnology GmbH, Denzlingen, Germany
| | | | | | | |
Collapse
|
5
|
Schneider E, Amar Y, Butter K, Steiger K, Musiol S, Garcia-Käufer M, Hölge IM, Schnautz B, Gschwendtner S, Ghirardo A, Gminski R, Eberlein B, Esser von Bieren J, Biedermann T, Haak S, Ohlmeyer M, Schmidt-Weber CB, Eyerich S, Alessandrini F. Pinewood VOC emissions protect from oxazolone-induced inflammation and dysbiosis in a mouse model of atopic dermatitis. ENVIRONMENT INTERNATIONAL 2024; 192:109035. [PMID: 39342822 DOI: 10.1016/j.envint.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Pinewood, increasingly used in construction and interior fittings, emits high amounts of volatile organic compounds (VOCs), which tend to accumulate in indoor air. Whether indoor VOCs affect the development of atopic dermatitis (AD) is a matter of debate. We aimed to evaluate the effects of pinewood VOCs on the development of AD-like inflammatory phenotype and linked microbiome alterations, both hallmarks of AD. An oxazolone-induced mouse model of AD was exposed to three different VOC concentrations emitted by pinewood plates throughout the experiment. The disease course and associated immunological and microbiological changes were evaluated. To validate and translate our results to humans, human keratinocytes were exposed to a synthetic pinewood VOCs mixture in an AD environment. Pinewood emitted mainly terpenes, which at a total concentration of 5 mg/m3 significantly improved oxazolone-induced key AD parameters, such as serum total IgE, transepidermal water loss, barrier gene alteration, inflammation, and dysbiosis. Notably, exposure to pinewood VOCs restored the loss of microbial richness and inhibit Staphylococci expansion characteristic of the oxazolone-induced mouse AD model. Most beneficial effects of pinewood VOCs were dose-dependent. In fact, lower (<3 mg/m3) or higher (>10 mg/m3) pinewood VOC levels maintained only limited beneficial effects, such as preserving the microbiome richness or impeding Staphylococci expansion, respectively. In the human in-vitro model, exposure of keratinocytes grown in an AD environment to a pinewood VOCs mixture reduced the release of inflammatory markers. In conclusion, our results indicate that airborne phytochemicals emitted from pinewood have beneficial effects on an AD-like phenotype and associated dysbiosis. These investigations highlight the effects of terpenes as environmental compounds in the prevention and/or control of atopic skin disease.
Collapse
Affiliation(s)
- Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Yacine Amar
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Katja Butter
- Thünen Institute of Wood Research, Hamburg, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Garcia-Käufer
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inga Marie Hölge
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Silvia Gschwendtner
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Richard Gminski
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Bernadette Eberlein
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Julia Esser von Bieren
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tilo Biedermann
- Department of Dermatology and Allergy, School of Medicine, Technical University of Munich (TUM), Munich, Germany
| | - Stefan Haak
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | | | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie Eyerich
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
6
|
Li Q, Tang X, Huang L, Wang T, Huang Y, Jiang S. Anti-allergic effect of vitamin C through inhibiting degranulation and regulating T H1/T H2 cell polarization. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5955-5963. [PMID: 38415860 DOI: 10.1002/jsfa.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Food allergy has become a global public health problem. This study aimed to explore the possible anti-allergic effect of vitamin C (VC). A rat basophilic leukemia (RBL)-2H3 cell degranulation model was used to assess the effect of VC on degranulation in vitro, and an ovalbumin (OVA)-induced BALB/c mouse allergy model was used to assess the anti-allergy effect of VC in vivo. RESULTS In vitro, VC significantly attenuated the release of β-hexosaminidase, tryptase and histamine, and also reduced cytokine production (interleukins 4 and 6, tumor necrosis factor α) significantly (P < 0.05), with the inhibitory effect demonstrating a positive correlation with VC dose. In vivo, compared with the OVA group, the levels of serum immunoglobulins E and G1 of the VC low-dose (VCL) group (50 mg kg-1) and high-dose (VCH) group (200 mg·kg-1) were significantly reduced (P < 0.05). Furthermore, the plasma histamine level was also significantly decreased (P < 0.05). Moreover, TH2 cell polarization in mice of the VCL and VCH groups was significantly inhibited (P < 0.05), promoting the TH1/TH2 cell polarization balance. Additionally, VC treatment enhanced the expression of CD80 (P < 0.05) in spleen and small intestine tissues, while significantly inhibiting the expression of CD86 (P < 0.05); notably, high-dose VC treatment was more effective. CONCLUSION VC exerted an anti-allergic effect through inhibiting degranulation and regulating TH1/TH2 cell polarization balance. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qian Li
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Xinlei Tang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Lu Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Tao Wang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Yutong Huang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
| | - Songsong Jiang
- College of Tourism and Culinary Science, Yangzhou University, Yangzhou, People's Republic of China
- Key Laboratory of Chinese Cuisine Intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, People's Republic of China
| |
Collapse
|
7
|
Oh YJ, Kim YS, Kim JW, Kim DW. Antibacterial and Antiviral Properties of Pinus densiflora Essential Oil. Foods 2023; 12:4279. [PMID: 38231728 DOI: 10.3390/foods12234279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/19/2024] Open
Abstract
The Korean mountains are home to the Korean red pine (Pinus densiflora). Pine needle oil has been used as a food additive and a traditional herbal medicine; however, any health-related properties of its trunk oil remain unknown. Herein, we assessed antibacterial and antiviral properties of essential oil extracted from the trunk of P. densiflora. Th extracted oil was hydrodistilled using a Clevenger apparatus and analyzed using gas chromatography-mass spectrometry. The antimicrobial activity of the oil was tested using the microbroth dilution technique against 10 bacterial species (6 g-positive and 4 g-negative) and fungi. The extract exerted strong antimicrobial activity against Vibrio parahaemolyticus, Bacillus cereus, Listeria monocytogenes, Propionibacterium acnes, and Malassezia furfur (minimum inhibitory concentration = 10 mL/L). Additionally, it exhibited dose-dependent activity against influenza virus A and feline coronavirus. Furthermore, among 20 identified constituents accounting for 98.7% of the oil contents, the major components included 3-cyclohexene-1-methanol (10.12%), 2-(4-methylcyclohexyl)-2-propanol (9.09%), fenchone (8.14%), O-isopropyltoluene (6.35%), and isothymol methyl ether (6.14%). The P. densiflora trunk essential oil showed antibacterial and antiviral activities that depended on its chemical composition and the microbial strains tested herein. The essential oil can be used as an antimicrobial agent and disinfectant.
Collapse
Affiliation(s)
- Yu Jin Oh
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| | - Yeong-Su Kim
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| | - Jae Woo Kim
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| | - Dae Wook Kim
- Department of Bioindustrial Research, Baekdudaegan National Arboretum, Bonghwa-gun 36209, Republic of Korea
| |
Collapse
|
8
|
Park C, Woo H, Park MJ. Development of Pinaceae and Cupressaceae Essential Oils from Forest Waste in South Korea. PLANTS (BASEL, SWITZERLAND) 2023; 12:3409. [PMID: 37836148 PMCID: PMC10574680 DOI: 10.3390/plants12193409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
The growing awareness of environmental issues has garnered increasing interest in the use of waste material in a wide variety of applications. From this viewpoint, developing essential oils from forest waste can bring new cost opportunities for the effective and sustainable management of unused forestry biomass. However, better knowledge of the production, chemical constituents, and application of essential oils is necessary. Among the species considered to be of interest from the point of view of their essential oils and forest biomass, Pinaceae and Cupressaceae were selected in this study as potential candidates for commercial essential oils based on previous studies. This current study focuses on investigating Pinaceae (Larix kaempferi, Pinus densiflora, and Pinus koraiensis) and Cupressaceae (Chamaecyparis obtusa and Chamaecyparis pisifera) essential oils extracted from various parts from the perspective of their bioactive compounds and potential applications. This is followed by an overview of the essential oils industry in South Korea, with particular attention being paid to utilising unused forest biomass. Therefore, this is a comprehensive review suggesting that Pinaceae and Cupressaceae essential oils extracted from various parts of forest waste could be utilised in various industries, adding value to the aspect of sustainable industry. Furthermore, our study contributes towards capturing the value of forest resources through the utilisation of native essential oils in South Korea.
Collapse
Affiliation(s)
- Chanjoo Park
- College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Heesung Woo
- College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea;
| | - Mi-Jin Park
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| |
Collapse
|
9
|
Krasnova OA, Minaychev VV, Akatov VS, Fadeev RS, Senotov AS, Kobyakova MI, Lomovskaya YV, Lomovskiy AI, Zvyagina AI, Krasnov KS, Shatalin YV, Penkov NV, Zhalimov VK, Molchanov MV, Palikova YA, Murashev AN, Maevsky EI, Fadeeva IS. Improving the Stability and Effectiveness of Immunotropic Squalene Nanoemulsion by Adding Turpentine Oil. Biomolecules 2023; 13:1053. [PMID: 37509089 PMCID: PMC10377128 DOI: 10.3390/biom13071053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Turpentine oil, owing to the presence of 7-50 terpenes, has analgesic, anti-inflammatory, immunomodulatory, antibacterial, anticoagulant, antioxidant, and antitumor properties, which are important for medical emulsion preparation. The addition of turpentine oil to squalene emulsions can increase their effectiveness, thereby reducing the concentration of expensive and possibly deficient squalene, and increasing its stability and shelf life. In this study, squalene emulsions were obtained by adding various concentrations of turpentine oil via high-pressure homogenization, and the safety and effectiveness of the obtained emulsions were studied in vitro and in vivo. All emulsions showed high safety profiles, regardless of the concentration of turpentine oil used. However, these emulsions exhibited dose-dependent effects in terms of both efficiency and storage stability, and the squalene emulsion with 1.0% turpentine oil had the most pronounced adjuvant and cytokine-stimulating activity as well as the most pronounced stability indicators when stored at room temperature. Thus, it can be concluded that the squalene emulsion with 1% turpentine oil is a stable, monomodal, and reliably safe ultradispersed emulsion and may have pleiotropic effects with pronounced immunopotentiating properties.
Collapse
Affiliation(s)
- Olga A Krasnova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Pushchino State Institute of Natural Science, Pushchino 142290, Russia
| | - Vladislav V Minaychev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Vladimir S Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Roman S Fadeev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Pushchino State Institute of Natural Science, Pushchino 142290, Russia
| | - Anatoly S Senotov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Margarita I Kobyakova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Yana V Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alexey I Lomovskiy
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Alyona I Zvyagina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Kirill S Krasnov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Pushchino State Institute of Natural Science, Pushchino 142290, Russia
| | - Yuriy V Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Nikita V Penkov
- Institute of Cell Biophysics RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia
| | - Vitaly K Zhalimov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Institute of Cell Biophysics RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino 142290, Russia
| | - Maxim V Molchanov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Yuliya A Palikova
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Arkady N Murashev
- Pushchino State Institute of Natural Science, Pushchino 142290, Russia
- Branch of Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Eugeny I Maevsky
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
| | - Irina S Fadeeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino 142290, Russia
- Pushchino State Institute of Natural Science, Pushchino 142290, Russia
| |
Collapse
|
10
|
Swiderski J, Sakkal S, Apostolopoulos V, Zulli A, Gadanec LK. Combination of Taurine and Black Pepper Extract as a Treatment for Cardiovascular and Coronary Artery Diseases. Nutrients 2023; 15:nu15112562. [PMID: 37299525 DOI: 10.3390/nu15112562] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/21/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
The shift in modern dietary regimens to "Western style" and sedentary lifestyles are believed to be partly responsible for the increase in the global burden of cardiovascular diseases. Natural products have been used throughout human history as treatments for a plethora of pathological conditions. Taurine and, more recently, black pepper have gained attention for their beneficial health effects while remaining non-toxic even when ingested in excess. Taurine, black pepper, and the major terpene constituents found in black pepper (i.e., β-caryophyllene; α-pinene; β-pinene; α-humulene; limonene; and sabinene) that are present in PhytoCann BP® have been shown to have cardioprotective effects based on anti-inflammatory, antioxidative, anti-hypertensive and anti-atherosclerotic mechanisms. This comprehensive review of the literature focuses on determining whether the combination of taurine and black pepper extract is an effective natural treatment for reducing cardiovascular diseases risk factors (i.e., hypertension and hyperhomocysteinemia) and for driving anti-inflammatory, antioxidative and anti-atherosclerotic mechanisms to combat coronary artery disease, heart failure, myocardial infarction, and atherosclerotic disease.
Collapse
Affiliation(s)
- Jordan Swiderski
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
- Immunology Program, Australian Institute for Musculoskeletal Science, Melbourne, VIC 3021, Australia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| | - Laura Kate Gadanec
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3030, Australia
| |
Collapse
|
11
|
Yang J, Lee SY, Jang SK, Kim KJ, Park MJ. Anti-Inflammatory Effects of Essential Oils from the Peels of Citrus Cultivars. Pharmaceutics 2023; 15:1595. [PMID: 37376044 DOI: 10.3390/pharmaceutics15061595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/19/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Citrus cultivars have remarkable health benefits, but only the anti-inflammatory activities of the major varieties have been studied. This study investigated the anti-inflammatory effects of various citrus cultivars and their active anti-inflammatory components. The essential oils of 21 citrus peels were extracted via hydrodistillation using a Clevenger-type apparatus, and the chemical compositions of the essential oils were analyzed. D-Limonene was the most abundant constituent. To evaluate the anti-inflammatory effects of the citrus cultivars, the gene expression levels of an inflammatory mediator and proinflammatory cytokines were investigated. Among the 21 essential oils, those extracted from C. japonica and C. maxima exhibited superior anti-inflammatory activities, being able to inhibit the expression of the inflammatory mediators and proinflammatory cytokines in lipopolysaccharide-stimulated RAW 264.7 cells. The essential oils of C. japonica and C. maxima were distinguished into seven distinct constituents, α-pinene, myrcene, D-limonene, β-ocimene, linalool, linalool oxide, and α-terpineol, compared with other essential oils. The anti-inflammatory activities of the seven single compounds significantly inhibited the levels of inflammation-related factors. In particular, α-terpineol exhibited a superior anti-inflammatory effect. This study showed that the essential oils from C. japonica and C. maxima exhibit high anti-inflammatory activity. In addition, α-terpineol is an active anti-inflammatory compound that contributes to inflammatory responses.
Collapse
Affiliation(s)
- Jiyoon Yang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Su-Yeon Lee
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Soo-Kyeong Jang
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Ki-Joong Kim
- Division of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Mi-Jin Park
- Forest Industrial Materials Division, Forest Products and Industry Department, National Institute of Forest Science, Seoul 02455, Republic of Korea
| |
Collapse
|
12
|
Chen Y, Zhang LL, Wang W, Wang G. Recent updates on bioactive properties of α-terpineol. JOURNAL OF ESSENTIAL OIL RESEARCH 2023. [DOI: 10.1080/10412905.2023.2196515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
13
|
Nasiri N, Ilaghi Nezhad M, Sharififar F, Khazaneha M, Najafzadeh MJ, Mohamadi N. The Therapeutic Effects of Nigella sativa on Skin Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:7993579. [PMID: 36518853 PMCID: PMC9744621 DOI: 10.1155/2022/7993579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2023]
Abstract
The aim of this systematic review was to identify randomized controlled trials that looked at the effects of Nigella sativa in any form on different skin diseases. Up to March 2022, the online databases of Scopus, Web of Science, PubMed, Embase, Google Scholar, and Cochrane trials were searched. This study included 14 records of people who had experienced different types of skin disease including atopic dermatitis, vulgaris, arsenical keratosis, psoriasis, vitiligo, acute cutaneous leishmaniasis, warts, eczema, and acne. The mean SD age of the patients was 28.86 (4.49); [range: 18.3-51.4], with females accounting for 69% (506 out of 732) of the total. The follow-up mean SD was 8.16 (1.3) (ranged: 4 days to 24 weeks). The odds ratio (OR) was found to be 4.59 in a meta-analysis (95% CI: 2.02, 10.39). Whereas the null hypothesis in this systematic review was that lotion had no impact, OR 4.59 indicated that lotion could be effective. The efficacy of N. sativa essential oil and extract has been demonstrated in most clinical studies. However, more research is needed to completely evaluate and validate the efficacy or inadequacy of therapy with N. sativa, although it appears that it can be used as an alternative treatment to help people cope with skin problems.
Collapse
Affiliation(s)
- Naser Nasiri
- HIV/STI Surveillance Research Center, and WHO Collaborating Center for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mozhde Ilaghi Nezhad
- Leishmaniasis Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fariba Sharififar
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mahdieh Khazaneha
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Neda Mohamadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
14
|
Neocinnamomum caudatum Essential Oil Ameliorates Lipopolysaccharide-Induced Inflammation and Oxidative Stress in RAW 264.7 Cells by Inhibiting NF-κB Activation and ROS Production. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238193. [PMID: 36500283 PMCID: PMC9736579 DOI: 10.3390/molecules27238193] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/16/2022] [Indexed: 11/27/2022]
Abstract
Neocinnamomum caudatum (Lauraceae) plant is used in the traditional system of medicine and is considered a potential source of edible fruits, spices, flavoring agents and biodiesel. The leaves, bark and roots of the species are used by local communities for the treatment of inflammatory responses, such as allergies, sinusitis and urinary tract infections. However, there is no scientific evidence to support the molecular mechanism through which this plant exerts its anti-inflammatory effect. The aim of the current research was to characterize the chemical constituents of bark (NCB) and leaf (NCL) essential oil of N. caudatum and to elucidate its anti-inflammatory action in lipopolysaccharide (LPS)-treated RAW 264.7 cells. Essential oils extracted by hydrodistillation were further subjected to gas chromatography mass spectrometry (GC-MS) analysis. The major constituents in bark essential oil identified as β-pinene (13.11%), α-cadinol (11.18%) and α-pinene (10.99%), whereas leaf essential oil was found to be rich in β-pinene (45.21%), myrcene (9.97%) and α-pinene (9.27%). Treatment with NCB and NCL at a concentration of 25 µg/mL exerted significant anti-inflammatory activity by significantly reducing LPS-triggered nitric oxide (NO) production to 45.86% and 61.64%, respectively, compared to the LPS-treated group. In the LPS-treated group, the production of proinflammatory cytokines, such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-1β, decreased after treatment with essential oil, alleviating the mRNA levels of inducible nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2. The essential oil also inhibited the production of intracellular ROS and attenuated the depletion of mitochondrial membrane potential in a concentration-dependent manner. Pretreatment with NCB also reduced nuclear factor kappa-B (NF-κB)/p65 translocation and elevated the levels of endogenous antioxidant enzymes in LPS-induced macrophages. The present findings, for the first time, demonstrate the anti-inflammatory potential of both bark and leaf essential oils of N. caudatum. The bark essential oil exhibited a significantly more important anti-inflammatory effect than the leaf essential oil and could be used as a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
|
15
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 227] [Impact Index Per Article: 75.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Terpenes and terpenoids are the main bioactive compounds of essential oils (EOs). EOs and their major constituents confer several biological activities. EOs are potential as natural food preservatives.
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia.,Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia.,Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|