1
|
Zuo WF, Pang Q, Zhu X, Yang QQ, Zhao Q, He G, Han B, Huang W. Heat shock proteins as hallmarks of cancer: insights from molecular mechanisms to therapeutic strategies. J Hematol Oncol 2024; 17:81. [PMID: 39232809 PMCID: PMC11375894 DOI: 10.1186/s13045-024-01601-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/20/2024] [Indexed: 09/06/2024] Open
Abstract
Heat shock proteins are essential molecular chaperones that play crucial roles in stabilizing protein structures, facilitating the repair or degradation of damaged proteins, and maintaining proteostasis and cellular functions. Extensive research has demonstrated that heat shock proteins are highly expressed in cancers and closely associated with tumorigenesis and progression. The "Hallmarks of Cancer" are the core features of cancer biology that collectively define a series of functional characteristics acquired by cells as they transition from a normal state to a state of tumor growth, including sustained proliferative signaling, evasion of growth suppressors, resistance to cell death, enabled replicative immortality, the induction of angiogenesis, and the activation of invasion and metastasis. The pivotal roles of heat shock proteins in modulating the hallmarks of cancer through the activation or inhibition of various signaling pathways has been well documented. Therefore, this review provides an overview of the roles of heat shock proteins in vital biological processes from the perspective of the hallmarks of cancer and summarizes the small-molecule inhibitors that target heat shock proteins to regulate various cancer hallmarks. Moreover, we further discuss combination therapy strategies involving heat shock proteins and promising dual-target inhibitors to highlight the potential of targeting heat shock proteins for cancer treatment. In summary, this review highlights how targeting heat shock proteins could regulate the hallmarks of cancer, which will provide valuable information to better elucidate and understand the roles of heat shock proteins in oncology and the mechanisms of cancer occurrence and development and aid in the development of more efficacious and less toxic novel anticancer agents.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xinyu Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian-Qian Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qian Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Gu He
- Department of Dermatology and Venereology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Hospital of Chengdu University of Traditional Chinese Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
2
|
Steffen CL, Manoharan GB, Pavic K, Yeste-Vázquez A, Knuuttila M, Arora N, Zhou Y, Härmä H, Gaigneaux A, Grossmann TN, Abankwa DK. Identification of an H-Ras nanocluster disrupting peptide. Commun Biol 2024; 7:837. [PMID: 38982284 PMCID: PMC11233548 DOI: 10.1038/s42003-024-06523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.
Collapse
Affiliation(s)
- Candy Laura Steffen
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matias Knuuttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Anthoula Gaigneaux
- Bioinformatics Core, Department of Life Sciences and Medicine, University of Luxembourg, 4367, Esch-sur-Alzette, Luxembourg
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
3
|
Kaya P, Schaffner-Reckinger E, Manoharan GB, Vukic V, Kiriazis A, Ledda M, Burgos Renedo M, Pavic K, Gaigneaux A, Glaab E, Abankwa DK. An Improved PDE6D Inhibitor Combines with Sildenafil To Inhibit KRAS Mutant Cancer Cell Growth. J Med Chem 2024; 67:8569-8584. [PMID: 38758695 PMCID: PMC11181323 DOI: 10.1021/acs.jmedchem.3c02129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 05/19/2024]
Abstract
The trafficking chaperone PDE6D (or PDEδ) was proposed as a surrogate target for K-Ras, leading to the development of a series of inhibitors that block its prenyl binding pocket. These inhibitors suffered from low solubility and suspected off-target effects, preventing their clinical development. Here, we developed a highly soluble, low nanomolar PDE6D inhibitor (PDE6Di), Deltaflexin3, which has the lowest off-target activity as compared to three prominent reference compounds. Deltaflexin3 reduces Ras signaling and selectively decreases the growth of KRAS mutant and PDE6D-dependent cancer cells. We further show that PKG2-mediated phosphorylation of Ser181 lowers K-Ras binding to PDE6D. Thus, Deltaflexin3 combines with the approved PKG2 activator Sildenafil to more potently inhibit PDE6D/K-Ras binding, cancer cell proliferation, and microtumor growth. As observed previously, inhibition of Ras trafficking, signaling, and cancer cell proliferation remained overall modest. Our results suggest reevaluating PDE6D as a K-Ras surrogate target in cancer.
Collapse
Affiliation(s)
- Pelin Kaya
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Elisabeth Schaffner-Reckinger
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Ganesh babu Manoharan
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Vladimir Vukic
- Faculty
of Technology, University of Novi Sad, 21000 Novi Sad, Serbia
| | - Alexandros Kiriazis
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, 20520 Turku, Finland
| | - Mirko Ledda
- Luxembourg
Center for Systems Biomedicine, University
of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Maria Burgos Renedo
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Anthoula Gaigneaux
- Bioinformatics
Core, Department of Life Sciences and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Enrico Glaab
- Luxembourg
Center for Systems Biomedicine, University
of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer
Cell Biology and Drug Discovery Group, Department of Life Sciences
and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Turku
Bioscience Centre, University of Turku and
Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
4
|
Chippalkatti R, Parisi B, Kouzi F, Laurini C, Ben Fredj N, Abankwa DK. RAS isoform specific activities are disrupted by disease associated mutations during cell differentiation. Eur J Cell Biol 2024; 103:151425. [PMID: 38795504 DOI: 10.1016/j.ejcb.2024.151425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 05/28/2024] Open
Abstract
The RAS-MAPK-pathway is aberrantly regulated in cancer and developmental diseases called RASopathies. While typically the impact of Ras on the proliferation of various cancer cell lines is assessed, it is poorly established how Ras affects cellular differentiation. Here we implement the C2C12 myoblast cell line to systematically study the effect of Ras mutants and Ras-pathway drugs on differentiation. We first provide evidence that a minor pool of Pax7+ progenitors replenishes a major pool of transit amplifying cells that are ready to differentiate. Our data indicate that Ras isoforms have distinct roles in the differentiating culture, where K-Ras depletion increases and H-Ras depletion decreases terminal differentiation. This assay could therefore provide significant new insights into Ras biology and Ras-driven diseases. In line with this, we found that all oncogenic Ras mutants block terminal differentiation of transit amplifying cells. By contrast, RASopathy associated K-Ras variants were less able to block differentiation. Profiling of eight targeted Ras-pathway drugs on seven oncogenic Ras mutants revealed their allele-specific activities and distinct abilities to restore normal differentiation as compared to triggering cell death. In particular, the MEK-inhibitor trametinib could broadly restore differentiation, while the mTOR-inhibitor rapamycin broadly suppressed differentiation. We expect that this quantitative assessment of the impact of Ras-pathway mutants and drugs on cellular differentiation has great potential to complement cancer cell proliferation data.
Collapse
Affiliation(s)
- Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Bianca Parisi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Farah Kouzi
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Christina Laurini
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Nesrine Ben Fredj
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette 4362, Luxembourg.
| |
Collapse
|
5
|
Wu D, Li Y, Zheng L, Xiao H, Ouyang L, Wang G, Sun Q. Small molecules targeting protein-protein interactions for cancer therapy. Acta Pharm Sin B 2023; 13:4060-4088. [PMID: 37799384 PMCID: PMC10547922 DOI: 10.1016/j.apsb.2023.05.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/28/2023] [Accepted: 05/22/2023] [Indexed: 10/07/2023] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to many biological processes that play an important role in the occurrence and development of a variety of diseases. Targeting the interaction between tumour-related proteins with emerging small molecule drugs has become an attractive approach for treatment of human diseases, especially tumours. Encouragingly, selective PPI-based therapeutic agents have been rapidly advancing over the past decade, providing promising perspectives for novel therapies for patients with cancer. In this review we comprehensively clarify the discovery and development of small molecule modulators of PPIs from multiple aspects, focusing on PPIs in disease, drug design and discovery strategies, structure-activity relationships, inherent dilemmas, and future directions.
Collapse
Affiliation(s)
- Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Lang Zheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Huan Xiao
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Qiu Sun
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, West China Hospital, Sichuan University /West China School of Nursing, Sichuan University, Chengdu 610041, China
- West China Medical Publishers, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Zhu X, Zou W, Meng X, Ji J, Wang X, Shu H, Chen Y, Pan D, Wang K, Zhou F. Elaiophylin Inhibits Tumorigenesis of Human Uveal Melanoma by Suppressing Mitophagy and Inducing Oxidative Stress via Modulating SIRT1/FoxO3a Signaling. Front Oncol 2022; 12:788496. [PMID: 35387119 PMCID: PMC8978265 DOI: 10.3389/fonc.2022.788496] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 02/28/2022] [Indexed: 12/18/2022] Open
Abstract
Uveal melanoma (UM) is the most common primary intraocular tumor in adults, which is associated with poor prognosis. Up to 50% of UM patients develop metastasis. Therapeutics that have proven effective in cutaneous melanoma have little success in treating UM, possibly due to its low mutational burden. Therefore, new drug therapies are highly desired for UM. Our in vitro studies showed that Elaiophylin, a late-stage autophagy inhibitor, exhibited an outstanding anticancer activity in human UM cell lines and human UM primary cells through suppressing mitophagy, inducing oxidative stress and leading to autophagic cell death. Our mechanistic study revealed that Elaiophylin exerted its effect by down-regulating SIRT1 and thus influencing deacetylation and mitochondrial localization of FoxO3a. In our confirmatory experiments, SRT1720, a SIRT1 specific activator, could attenuate Elaiophylin-induced inhibition of mitophagy and elevation of oxidative stress, and such effects was partly reversed by FoxO3a knockdown. Our further in vivo studies showed that Elaiophylin dramatically inhibited tumor growth in the human UM xenograft mouse model, which was accompanied with a decreased SIRT1 expression. Thus, the current study is the first to demonstrate that Elaiophylin has a potent anti-cancer effect against UM, which activity is possibly mediated through regulating SIRT1-FoxO3a signaling axis. And Elaiophylin may be a new and promising drug candidate to treat human UM.
Collapse
Affiliation(s)
- Xue Zhu
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wenjun Zou
- Department of Ophthalmology, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xinmin Meng
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China.,Department of Laboratory Medicine, Cancer Medical College of Guangxi Medical University, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiali Ji
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Xun Wang
- Department of Respiratory and Critical Care Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi, China
| | - Hong Shu
- Department of Laboratory Medicine, Cancer Medical College of Guangxi Medical University, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yuan Chen
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Donghui Pan
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Ke Wang
- National Health Commission (NHC) Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Fanfan Zhou
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|