1
|
Kimura M, Nomura S, Ouchi T, Kurashima R, Nakano R, Sekiya H, Kuroda H, Kono K, Shibukawa Y. Intracellular cAMP signaling-induced Ca 2+ influx mediated by calcium homeostasis modulator 1 (CALHM1) in human odontoblasts. Pflugers Arch 2024:10.1007/s00424-024-03038-4. [PMID: 39528838 DOI: 10.1007/s00424-024-03038-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
In odontoblasts, intracellular Ca2+ signaling plays key roles in reactionary dentin formation and generation of dentinal pain. Odontoblasts also express several Gs protein-coupled receptors that promote production of cyclic AMP (cAMP). However, the crosstalk between intracellular cAMP and Ca2+ signaling, as well as the role of cAMP in the cellular functions of odontoblasts, remains unclear. In this study, we measured intracellular cAMP levels and intracellular free Ca2+ concentration ([Ca2+]i). We also investigated the effect of intracellular cAMP on mineralization by the odontoblasts. In the presence of extracellular Ca2+, the application of forskolin (adenylyl cyclase activator) or isoproterenol (Gs protein-coupled beta-2 adrenergic receptor agonist) increased intracellular cAMP levels and [Ca2+]i in odontoblasts. The [Ca2+]i increases could not be observed by removing extracellular Ca2+, indicating that cAMP is capable to activate Ca2+ entry. Forskolin-induced [Ca2+]i increase was inhibited by a protein kinase A inhibitor in odontoblasts. The [Ca2+]i increase was sensitive to Gd3+, 2APB, or Zn2+ but not verapamil, ML218, or La3+. In immunofluorescence analyses, odontoblasts were immunopositive for calcium homeostasis modulator 1 (CALHM1), which was found close to ionotropic ATP receptor subtype, P2X3 receptors. When CALHM1 was knocked down, forskolin-induced [Ca2+]i increase was suppressed. Alizarin red and von Kossa staining showed that forskolin decreased mineralization. These findings suggest that activation of adenylyl cyclase elicited increases in the intracellular cAMP level and Ca2+ influx via protein kinase A activation in odontoblasts. Subsequent cAMP-dependent Ca2+ influx was mediated by CALHM1 in odontoblasts. In addition, the intracellular cAMP signaling pathway in odontoblasts negatively mediated dentinogenesis.
Collapse
Affiliation(s)
- Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Sachie Nomura
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Rei Nakano
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Yokohama, 230-0045, Japan
- Japan Animal Specialty Medical Institute (JASMINE), Yokohama, 224-0001, Japan
| | - Hinako Sekiya
- Department of Endodontics, Tokyo Dental College, Tokyo, 101-0061, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
- Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, 238-8570, Japan
| | - Kyosuke Kono
- Department of Physiology, Tokyo Dental College, Tokyo, 101-0061, Japan
| | | |
Collapse
|
2
|
Hoveizi E, Naddaf H, Ahmadianfar S, Bernardi S. Using Odontoblasts Derived from Dog Endometrial Stem Cells Encapsulated in Fibrin Gel Associated with BMP-2 in a Rat Pulp-Capping Model. Curr Issues Mol Biol 2023; 45:2984-2999. [PMID: 37185720 PMCID: PMC10136987 DOI: 10.3390/cimb45040196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
This study aimed to treat dental injuries by utilizing one of the most advanced tissue engineering techniques. In this study, an in vitro model was employed to investigate the proliferation and odontogenic differentiation of canine endometrial stem cells (C-EnSCs). Furthermore, the dentin regeneration potential of odontoblast like-cells (OD) derived from C-EnSCs was assessed in rats. The C-EnSCs were isolated by the enzymatic method and identified by flow cytometry. The C-EnSCs were encapsulated in fibrin gel associated with signaling factors to create the proper conditions for cell growth and differentiation. Then, the OD cells were associated with bone morphologic protein-2 (BMP-2) to promote dentin formation in vivo. The animal model used to evaluate the regenerative effect of cells and biomaterials included the preparation of the left maxillary first molar of rats for direct pulp capping operation. Animals were divided into four groups: group 1, a control group without any treatment, group 2, which received fibrin, group 3, which received fibrin with ODs (fibrin/ODs), and group 4, which received fibrin with ODs and BMP-2 (fibrin/ODs/BMP-2). The morphological observations showed the differentiation of C-EnSCs into adipose, bone, neural cells, and ODs. Furthermore, the histomorphometric data of the treated teeth showed how fibrin gel and BMP2 at a concentration of 100 ng/mL provided an optimal microenvironment for regenerating dentin tissue in rats, which was increased significantly with the presence of OD cells within eight weeks. Our study showed that using OD cells derived from C-EnSCs encapsulated in fibrin gel associated with BMP2 can potentially be an appropriate candidate for direct pulp-capping and dentin regeneration.
Collapse
Affiliation(s)
- Elham Hoveizi
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Hadi Naddaf
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Sina Ahmadianfar
- Department of Clinical Sciences, Faculty of Veterinary, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Sara Bernardi
- Department of Life Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
3
|
Ohyama S, Ouchi T, Kimura M, Kurashima R, Yasumatsu K, Nishida D, Hitomi S, Ubaidus S, Kuroda H, Ito S, Takano M, Ono K, Mizoguchi T, Katakura A, Shibukawa Y. Piezo1-pannexin-1-P2X 3 axis in odontoblasts and neurons mediates sensory transduction in dentinal sensitivity. Front Physiol 2022; 13:891759. [PMID: 36589456 PMCID: PMC9795215 DOI: 10.3389/fphys.2022.891759] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
According to the "hydrodynamic theory," dentinal pain or sensitivity is caused by dentinal fluid movement following the application of various stimuli to the dentin surface. Recent convergent evidence in Vitro has shown that plasma membrane deformation, mimicking dentinal fluid movement, activates mechanosensitive transient receptor potential (TRP)/Piezo channels in odontoblasts, with the Ca2+ signal eliciting the release of ATP from pannexin-1 (PANX-1). The released ATP activates the P2X3 receptor, which generates and propagates action potentials in the intradental Aδ afferent neurons. Thus, odontoblasts act as sensory receptor cells, and odontoblast-neuron signal communication established by the TRP/Piezo channel-PANX-1-P2X3 receptor complex may describe the mechanism of the sensory transduction sequence for dentinal sensitivity. To determine whether odontoblast-neuron communication and odontoblasts acting as sensory receptors are essential for generating dentinal pain, we evaluated nociceptive scores by analyzing behaviors evoked by dentinal sensitivity in conscious Wistar rats and Cre-mediated transgenic mouse models. In the dentin-exposed group, treatment with a bonding agent on the dentin surface, as well as systemic administration of A-317491 (P2X3 receptor antagonist), mefloquine and 10PANX (non-selective and selective PANX-1 antagonists), GsMTx-4 (selective Piezo1 channel antagonist), and HC-030031 (selective TRPA1 channel antagonist), but not HC-070 (selective TRPC5 channel antagonist), significantly reduced nociceptive scores following cold water (0.1 ml) stimulation of the exposed dentin surface of the incisors compared to the scores of rats without local or systemic treatment. When we applied cold water stimulation to the exposed dentin surface of the lower first molar, nociceptive scores in the rats with systemic administration of A-317491, 10PANX, and GsMTx-4 were significantly reduced compared to those in the rats without systemic treatment. Dentin-exposed mice, with somatic odontoblast-specific depletion, also showed significant reduction in the nociceptive scores compared to those of Cre-mediated transgenic mice, which did not show any type of cell deletion, including odontoblasts. In the odontoblast-eliminated mice, P2X3 receptor-positive A-neurons were morphologically intact. These results indicate that neurotransmission between odontoblasts and neurons mediated by the Piezo1/TRPA1-pannexin-1-P2X3 receptor axis is necessary for the development of dentinal pain. In addition, odontoblasts are necessary for sensory transduction to generate dentinal sensitivity as mechanosensory receptor cells.
Collapse
Affiliation(s)
- Sadao Ohyama
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Oral Surgery, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Takehito Ouchi
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Maki Kimura
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Ryuya Kurashima
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | | | - Daisuke Nishida
- Oral Health Science Center, Tokyo Dental College, Tokyo, Japan
| | - Suzuro Hitomi
- Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan,Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Sobhan Ubaidus
- Department of Physiology, Tokyo Dental College, Tokyo, Japan
| | - Hidetaka Kuroda
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,Department of Dental Anesthesiology, Kanagawa Dental University, Yokosuka, Japan
| | - Shinichirou Ito
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Masayuki Takano
- Department of Oral and Maxillofacial Surgery, Tokyo Dental College, Tokyo, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | | | - Akira Katakura
- Department of Oral Pathological Science and Surgery, Tokyo Dental College, Tokyo, Japan
| | - Yoshiyuki Shibukawa
- Department of Physiology, Tokyo Dental College, Tokyo, Japan,*Correspondence: Yoshiyuki Shibukawa,
| |
Collapse
|
4
|
Boutin JA, Bedut S, Jullian M, Galibert M, Frankiewicz L, Gloanec P, Ferry G, Puget K, Leprince J. Caloxin-derived peptides for the inhibition of plasma membrane calcium ATPases. Peptides 2022; 154:170813. [PMID: 35605801 DOI: 10.1016/j.peptides.2022.170813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022]
Abstract
Plasma membrane calcium ATPases (PMCAs) are a family of transmembrane proteins responsible for the extrusion of cytosolic Ca2+ to the extracellular milieu. They are important players of the calcium homeostasis possibly implicated in some important diseases. The reference inhibitors of PMCA extruding activity are on one hand ortho-vanadate (IC50 in the 30 mM range), and on the other a series of 12- to 20-mer peptides named caloxins (IC50 in the 100 µM scale). As for all integral membrane proteins, biochemistry and pharmacology are difficult to study on isolated and/or purified proteins. Using a series of reference blockers, we assessed a pharmacological window with which we could study the functionality of PMCAs in living cells. Using this system, we screened for alternative versions of caloxins, aiming at shortening the peptide backbone, introducing non-natural amino acids, and overall trying to get a glimpse at the structure-activity relationship between those new peptides and the protein in a cellular context. We describe a short series of equipotent 5-residue long analogues with IC50 in the low µM range.
Collapse
Affiliation(s)
- Jean A Boutin
- Institut de Recherches Servier, Croissy-sur-Seine, France; INSERM U1239, University of Rouen Normandy, Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen, France.
| | | | | | | | | | | | - Gilles Ferry
- Institut de Recherches Servier, Croissy-sur-Seine, France
| | | | - Jérôme Leprince
- INSERM U1239, University of Rouen Normandy, Laboratory of Neuroendocrine Endocrine and Germinal Differentiation and Communication (NorDiC), Rouen, France; INSERM US51, University of Rouen Normandy, Cell Imaging Platform of Normandy (PRIMACEN), Rouen, France
| |
Collapse
|
5
|
Ouchi T, Nakagawa T. Tissue Regeneration and Physiological Functional Recovery in Dental and Craniofacial Fields. Biomolecules 2021; 11:1644. [PMID: 34827642 PMCID: PMC8615394 DOI: 10.3390/biom11111644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 02/07/2023] Open
Abstract
Dental and oral tissues maintain homeostasis through potential reparative or regenerative processes [...].
Collapse
Affiliation(s)
- Takehito Ouchi
- Department of Physiology, Tokyo Dental College, 2-9-18, Kanda-Misaki-cho, Chiyoda-ku, Tokyo 101-0061, Japan
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, USA
| | - Taneaki Nakagawa
- Department of Dentistry and Oral Surgery, Keio University School of Medicine, 35 Shinano-machi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|