1
|
Su L, Guo B, Jiang L, Lin Y, Xu Q, Zheng D, Xiu Y. Intestinal epithelial cells of Japanese flounder (Paralichthys olivaceus) as an in vitro model for studying intestine immune function based on transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109473. [PMID: 38458502 DOI: 10.1016/j.fsi.2024.109473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 03/01/2024] [Indexed: 03/10/2024]
Abstract
Japanese flounder (Paralichthys olivaceus) is an economically crucial marine species, but diseases like hemorrhagic septicemia caused by Edwardsiella tarda have resulted in significant economic losses. E. tarda infects various hosts, and its pathogenicity in fish is not fully understood. Lipopolysaccharides (LPS) are components of the outer membrane of Gram-negative bacteria and are representative of typical PAMP molecules that cause activation of the immune system. The PoIEC cell line is a newly established intestinal epithelial cell line from P. olivaceus. In order to investigate whether it can be used as an in vitro model for studying the pathogenesis of E. tarda and LPS stimulation, we conducted RNA-seq experiments for the PoIECs model of E. tarda infection and LPS stimulation. In this study, transcriptome sequencing was carried out in the PoIEC cell line after treatment with LPS and E. tarda. A total of 62.52G of high-quality data from transcriptome sequencing results were obtained in nine libraries, of which an average of 87.96% data could be aligned to the P. olivaceus genome. Data analysis showed that 283 and 414 differentially expressed genes (DEGs) in the LPS versus Control (LPS-vs-Con) and E. tarda versus Control groups (Et-vs-Con), respectively, of which 60 DEGs were shared in two comparation groups. The GO terms were predominantly enriched in the extracellular space, inflammatory response, and cytokine activity in the LPS-vs-Con group, whereas GO terms were predominantly enriched in nucleus and positive regulation of transcription by RNA polymerase II in the Et-vs-Con group. KEGG analysis revealed that three immune-related pathways were co-enriched in both comparison groups, including the Toll-like receptor signaling pathway, C-type lectin receptor signaling pathway, and Cytokine-cytokine receptor interaction. Five genes were randomly screened to confirm the validity and accuracy of the transcriptome data. These results suggest that PoIEC cell line can be an ideal in vitro model for studies of marine fish gut immunity and pathogenesis of Edwardsiellosis.
Collapse
Affiliation(s)
- Lin Su
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Baoshan Guo
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lirong Jiang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yiping Lin
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Qingyue Xu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dong Zheng
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yunji Xiu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
2
|
Sun JQ, Zhao KY, Zhang ZX, Li XP. Two novel teleost calreticulins PoCrt-1/2, with bacterial binding and agglutination activity, are involved in antibacterial immunity. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109203. [PMID: 37940083 DOI: 10.1016/j.fsi.2023.109203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023]
Abstract
Calreticulin (Crt), a conserved lectin-like pleiotropic protein, plays crucial roles in mammalian immune response. In fish, the immunological function of Crt is limited investigated. Herein, we studied the antibacterial immunity of two type of Crt homologues (i.e. PoCrt-1 and PoCrt-2) in Japanese flounder (Paralichthys olivaceus). PoCrt-1 and PoCrt-2 are composed of 419 and 427 amino acid residues respectively, with 69.09% overall sequence identities with each other. Both PoCrt-1 and PoCrt-2 contain a signal peptide and three functional domains i.e. N-, P- and C-domains. Both PoCrt-1 and PoCrt-2 were constitutively expressed at various tissues with highest expression level in liver, and obviously regulated by Edwardsiella tarda and Vibrio harveyi. Furthermore, recombinant PoCrt-1 and PoCrt-2 (rPoCrt-1 and rPoCrt-2) could bind to different Gram-negative bacteria with highest binding index with E. tarda. At same time, in vitro rPoCrt-1 and rPoCrt-2 could agglutinate E. tarda, V. harveyi, and Vibrio anguillarum, and inhibit the bacterial growth. Similarly, in vivo rPoCrt-1 and rPoCrt-2 could significantly suppress the dissemination of E. tarda. Overall, these observations add new insights into the antibacterial immunity of Crt in P. olivaceus.
Collapse
Affiliation(s)
- Jia-Qi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Kun-Yu Zhao
- School of Ocean, Yantai University, Yantai, China
| | | | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
3
|
Ding L, Wu X, Lin J, Zhang J, Shi H, Hong M, Fang Z. Butylparaben disordered intestinal homeostasis in Chinese striped-necked turtles (Mauremys sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 262:115193. [PMID: 37392661 DOI: 10.1016/j.ecoenv.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/04/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Butylparaben (BuP) is regarded as a widespread pollutant, which has potential risk to aquatic organisms. Turtle species are an important part of aquatic ecosystems, however, the effect of BuP on aquatic turtles is not known. In this study, we evaluated the effect of BuP on intestinal homeostasis of Chinese striped-necked turtle (Mauremys sinensis). We exposed turtles to concentrations of BuP (0, 5, 50, and 500 μg/L) for 20 weeks, then investigated the composition of gut microbiota, the structure of intestine, and the inflammatory and immune status. We found BuP exposure significantly changed the composition of gut microbiota. Specially, the unique genus in three concentrations of BuP-treated groups mainly was Edwardsiella, which was not present in control group (0 μg/L of BuP). In addition, the height of intestinal villus was shortened, and the thickness of muscularis was thinned in BuP-exposed groups. Particularly, the number of goblet cells obviously decreased, the transcription of mucin2 and zonulae occluden-1 (ZO-1) significantly downregulated in BuP-exposed turtles. Meanwhile, neutrophils and natural killer cells in lamina propria of intestinal mucosa increased in BuP-treated groups, especially in high concentration of BuP (500 μg/L). Moreover, the mRNA expression of pro-inflammatory cytokines, especially IL-1β showed a significant upregulation with BuP concentrations. Correlation analysis indicated the abundance of Edwardsiella was positively correlated with IL-1β and IFN-γ expression, whereas its abundance was negatively correlative with the number of goblet cells. Taken together, the present study demonstrated BuP exposure disordered intestinal homeostasis through inducing dysbiosis of gut microbiota, causing inflammatory response and impairing gut physical barrier in turtles, which emphasized the hazard of BuP to health of aquatic organism.
Collapse
Affiliation(s)
- Li Ding
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xia Wu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jing Lin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Haitao Shi
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Meiling Hong
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China.
| | - Zhenhua Fang
- School of Tropical Agricultural Technology, Hainan College of Vocation and Technique, Haikou 570216, China.
| |
Collapse
|
4
|
A Non-Canonical Teleost NK-Lysin: Antimicrobial Activity via Multiple Mechanisms. Int J Mol Sci 2022; 23:ijms232112722. [PMID: 36361512 PMCID: PMC9654944 DOI: 10.3390/ijms232112722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 01/25/2023] Open
Abstract
NK-lysin (NKL) is a family of antimicrobial proteins with an important role in innate and adaptive immunity. In this study, a non-canonical NK-lysin (NKLnc) was identified in the Japanese flounder (Paralichthys olivaceus), which shares low sequence identities (15.8-20.6%) with previously reported fish NKLs and was phylogenetically separated from the canonical NKLs in teleost. NKLnc expression was upregulated in flounder tissues during bacterial infection, and interference with NKLnc expression impaired the ability of flounder cells to eliminate invading bacteria. When expressed in Escherichia coli, NKLnc was detrimental to the host cells. P35, a peptide derived from the saposin B domain (SapB) of NKLnc, bound major bacterial surface molecules and killed both Gram-negative and Gram-positive bacteria by inflicting damage to bacterial cell structure and genomic DNA. The bactericidal activity, but not the bacteria-binding capacity, of P35 required the structural integrity of the alpha 2/3 helices in SapB. Furthermore, P35 induced the migration of flounder peripheral blood leukocytes, inhibited bacterial dissemination in fish tissues, and facilitated fish survival after bacterial challenge. Together our study reveals that NKLnc plays an important part in flounder immune defense, and that NKLnc peptide exerts an antimicrobial effect via multiple mechanisms by targeting both bacteria and fish cells.
Collapse
|
5
|
Liu X, Rong N, Sun W, Jian S, Chao J, Chen C, Chen R, Ding R, Chen C, Liu Y, Zhang X. The identification of polyvalent protective immunogens and immune abilities from the outer membrane proteins of Aeromonas hydrophila in fish. FISH & SHELLFISH IMMUNOLOGY 2022; 128:101-112. [PMID: 35926820 DOI: 10.1016/j.fsi.2022.07.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/13/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Among aquaculture vaccines, polyvalent vaccines (for immunoprotection against multiple bacterial species) are more efficient and can better avoid bacterial resistance and antibiotic residues in fish. Here, 15 outer membrane proteins (OMPs) of Aeromonas hydrophila were cloned and purified, and mouse antisera were prepared. Passive immunization to Carassius auratus showed that four OMPs sera (OmpW, OmpAII, P5, and AHA2685) and the entire OMPs serum held effective immunoprotection against A. hydrophila infection. Furthermore, the active immunization of four OMPs to C. auratus showed that OmpW, OmpAII, P5, and AHA2685 held effective immunoprotection against A. hydrophila, and OmpW held active cross-protection against Vibrio alginolyticus. The mechanisms of these four candidate vaccines in triggering immune responses were subsequently explored. They all could activate innate immune responses in active immunization, down-regulate (p < 0.05) the inflammation-related genes expression to reduce the inflammatory reaction induced by A. hydrophila, and down-regulate (p < 0.05) antioxidant-related factors to reduce the antioxidant reaction for bacterial infection. Noteablely, the four OMPs had protective abilities on kidney and spleen tissues of C. auratus after challenged with A. hydrophila and V. alginolyticus by histopathological observation. Collectively, our results identify OmpW as a polyvalent vaccine candidate, and OmpAII, P5, and AHA2685 as vaccine candidates against A. hydrophila infection in fish.
Collapse
Affiliation(s)
- Xiang Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China.
| | - Na Rong
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Wei Sun
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Sijie Jian
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Jia Chao
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Chunlin Chen
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China
| | - Rui Chen
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Rui Ding
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Chen Chen
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China
| | - Yong Liu
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, 236041, China.
| | - Xiaoying Zhang
- Chinese-German Joint Institute for Natural Product Research, College of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong, 723000, China; Centre of Molecular & Environmental Biology, Department of Biology, University of Minho, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|