1
|
Le SP, Krishna J, Gupta P, Dutta R, Li S, Chen J, Thayumanavan S. Polymers for Disrupting Protein-Protein Interactions: Where Are We and Where Should We Be? Biomacromolecules 2024; 25:6229-6249. [PMID: 39254158 DOI: 10.1021/acs.biomac.4c00850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Protein-protein interactions (PPIs) are central to the cellular signaling and regulatory networks that underlie many physiological and pathophysiological processes. It is challenging to target PPIs using traditional small molecule or peptide-based approaches due to the frequent lack of well-defined binding pockets at the large and flat PPI interfaces. Synthetic polymers offer an opportunity to circumvent these challenges by providing unparalleled flexibility in tuning their physiochemical properties to achieve the desired binding properties. In this review, we summarize the current state of the field pertaining to polymer-protein interactions in solution, highlighting various polyelectrolyte systems, their tunable parameters, and their characterization. We provide an outlook on how these architectures can be improved by incorporating sequence control, foldability, and machine learning to mimic proteins at every structural level. Advances in these directions will enable the design of more specific protein-binding polymers and provide an effective strategy for targeting dynamic proteins, such as intrinsically disordered proteins.
Collapse
Affiliation(s)
- Stephanie P Le
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jithu Krishna
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Prachi Gupta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Ranit Dutta
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Shanlong Li
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| | - S Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
- Department of Biomedical Engineering, University of Massachusetts, Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
2
|
Zhou J, Wan Y, Cohen Stuart MA, Wang M, Wang J. Effects of Control Factors on Protein-Polyelectrolyte Complex Coacervation. Biomacromolecules 2023; 24:5759-5768. [PMID: 37955264 DOI: 10.1021/acs.biomac.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
Protein-polyelectrolyte complex coacervation is of particular interest for mimicking intracellular phase separation and organization. Yet, the challenge arises from regulating the coacervation due to the globular structure and anisotropic distributed charges of protein. Herein, we fully investigate the different control factors and reveal their effects on protein-polyelectrolyte coacervation. We prepared mixtures of BSA (bovine serum albumin) with different cationic polymers, which include linear and branched polyelectrolytes covering different spacer and charge groups, chain lengths, and polymer structures. With BSA-PDMAEMA [poly(N,N-dimethylaminomethyl methacrylate)] as the main investigated pair, we find that the moderate pH and ionic strength are essential for the adequate electrostatic interaction and formation of coacervate droplets. For most BSA-polymer mixtures, excess polyelectrolytes are required to achieve the full complexation, as evidenced by the deviated optimal charge mixing ratios from the charge stoichiometry. Polymers with longer chains or primary amine groups and a branched structure endow a strong electrostatic interaction with BSA and cause a bigger charge ratio deviation associated with the formation of solid-like coacervate complexes. Nevertheless, both the liquid- and solid-like coacervates hardly interrupt the BSA structure and activity, indicating the safe encapsulation of proteins by the coacervation with polyelectrolytes. Our study validates the crucial control of the diverse factors in regulating protein-polyelectrolyte coacervation, and the revealed principles shall be instructive for establishing other protein-based coacervations and boosting their potential applications.
Collapse
Affiliation(s)
- Jin Zhou
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Simončič M, Hritz J, Lukšič M. Biomolecular Complexation on the "Wrong Side": A Case Study of the Influence of Salts and Sugars on the Interactions between Bovine Serum Albumin and Sodium Polystyrene Sulfonate. Biomacromolecules 2022; 23:4412-4426. [PMID: 36134887 PMCID: PMC9554918 DOI: 10.1021/acs.biomac.2c00933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Indexed: 11/28/2022]
Abstract
In the protein purification, drug delivery, food industry, and biotechnological applications involving protein-polyelectrolyte complexation, proper selection of co-solutes and solution conditions plays a crucial role. The onset of (bio)macromolecular complexation occurs even on the so-called "wrong side" of the protein isoionic point where both the protein and the polyelectrolyte are net like-charged. To gain mechanistic insights into the modulatory role of salts (NaCl, NaBr, and NaI) and sugars (sucrose and sucralose) in protein-polyelectrolyte complexation under such conditions, interaction between bovine serum albumin (BSA) and sodium polystyrene sulfonate (NaPSS) at pH = 8.0 was studied by a combination of isothermal titration calorimetry, fluorescence spectroscopy, circular dichroism, and thermodynamic modeling. The BSA-NaPSS complexation proceeds by two binding processes (first, formation of intrapolymer complexes and then formation of interpolymer complexes), both driven by favorable electrostatic interactions between the negatively charged sulfonic groups (-SO3-) of NaPSS and positively charged patches on the BSA surface. Two such positive patches were identified, each responsible for one of the two binding processes. The presence of salts screened both short-range attractive and long-range repulsive electrostatic interactions between both macromolecules, resulting in a nonmonotonic dependence of the binding affinity on the total ionic strength for both binding processes. In addition, distinct anion-specific effects were observed (NaCl < NaBr < NaI). The effect of sugars was less pronounced: sucrose had no effect on the complexation, but its chlorinated analogue, sucralose, promoted it slightly due to the screening of long-range repulsive electrostatic interactions between BSA and NaPSS. Although short-range non-electrostatic interactions are frequently mentioned in the literature in relation to BSA or NaPSS, we found that the main driving force of complexation on the "wrong side" are electrostatic interactions.
Collapse
Affiliation(s)
- Matjaž Simončič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| | - Jozef Hritz
- Central
European Institute of Technology, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
- Department
of Chemistry, Faculty of Science, Masaryk
University, Kamenice
5, CZ-62500 Brno, Czechia
| | - Miha Lukšič
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna Pot 113, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
4
|
Malicka W, Haag R, Ballauff M. Interaction of Heparin with Proteins: Hydration Effects. J Phys Chem B 2022; 126:6250-6260. [PMID: 35960645 DOI: 10.1021/acs.jpcb.2c04928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We present a thermodynamic investigation of the interaction of heparin with lysozyme in the presence of potassium glutamate (KGlu). The binding constant Kb is measured by isothermal titration calorimetry (ITC) in a temperature range from 288 to 310 K for concentrations of KGlu between 25 and 175 mM. The free energy of binding ΔGb derived from Kb is strongly decreasing with increasing concentration of KGlu, whereas the dependence of ΔGb on temperature T is found to be small. The decrease of ΔGb can be explained in terms of counterion release: Binding of lysozyme to the strong polyelectrolyte heparin liberates approximately three of the condensed counterions of heparin, thus increasing the entropy of the system. The dependence of ΔGb on T, on the other hand, is traced back to a change of hydration of the protein and the polyelectrolyte upon complex formation. This dependence is quantitatively described by the parameter Δw that depends on T and vanishes at a characteristic temperature T0. A comparison of the complex formation in the presence of KGlu with the one in the presence of NaCl demonstrates that the parameters related to hydration are changed considerably. The characteristic temperature T0 in the presence of KGlu solutions is considerably smaller than that in the presence of NaCl solutions. The change of specific heat Δcp is found to become more negative with increasing salt concentration: This finding agrees with the model-free analysis by the generalized van't Hoff equation. The entire analysis reveals a small but important change of the free energy of binding by hydration. It shows that these ion-specific Hofmeister effects can be modeled quantitatively in terms of a characteristic temperature T0 and a parameter describing the dependence of Δcp on salt concentration.
Collapse
Affiliation(s)
- Weronika Malicka
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
5
|
Ballauff M. Denaturation of proteins: electrostatic effects vs. hydration. RSC Adv 2022; 12:10105-10113. [PMID: 35424951 PMCID: PMC8968186 DOI: 10.1039/d2ra01167k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
The unfolding transition of proteins in aqueous solution containing various salts or uncharged solutes is a classical subject of biophysics. In many cases, this transition is a well-defined two-stage equilibrium process which can be described by a free energy of transition ΔG u and a transition temperature T m. For a long time, it has been known that solutes can change T m profoundly. Here we present a phenomenological model that describes the change of T m with the solute concentration c s in terms of two effects: (i) the change of the number of correlated counterions Δn ci and (ii) the change of hydration expressed through the parameter Δw and its dependence on temperature expressed through the parameter dΔc p/dc s. Proteins always carry charges and Δn ci describes the uptake or release of counterions during the transition. Likewise, the parameter Δw measures the uptake or release of water during the transition. The transition takes place in a reservoir with a given salt concentration c s that defines also the activity of water. The parameter Δn ci is a measure for the gain or loss of free energy because of the release or uptake of ions and is related to purely entropic effects that scale with ln c s. Δw describes the effect on ΔG u through the loss or uptake of water molecules and contains enthalpic as well as entropic effects that scale with c s. It is related to the enthalpy of transition ΔH u through a Maxwell relation: the dependence of ΔH u on c s is proportional to the dependence of Δw on temperature. While ionic effects embodied in Δn ci are independent of the kind of salt, the hydration effects described through Δw are directly related to Hofmeister effects of the various salt ions. A comparison with literature data underscores the general validity of the model.
Collapse
Affiliation(s)
- Matthias Ballauff
- Institut für Chemie und Biochemie, Freie Universität Berlin Takustraße 3 14195 Berlin Germany
| |
Collapse
|