1
|
Liu X, Jimenez-Alesanco A, Li Z, Rizzuti B, Neira JL, Estaras M, Peng L, Chuluyan E, Garona J, Gottardo F, Velazquez-Campoy A, Xia Y, Abian O, Santofimia-Castaño P, Iovanna J. Development of an efficient NUPR1 inhibitor with anticancer activity. Sci Rep 2024; 14:29515. [PMID: 39604425 PMCID: PMC11603058 DOI: 10.1038/s41598-024-79340-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Pancreatic cancer is highly lethal and has limited treatment options available. Our team had previously developed ZZW-115, a promising drug candidate that targets the nuclear protein 1 (NUPR1), which is involved in pancreatic cancer development and progression. However, clinical translation of ZZW-115 was hindered due to potential cardiotoxicity caused by its interaction with the human Ether-à-go-go-Related Gene (hERG) potassium channel. To address this, we have performed a high-throughput screening of 10,000 compounds from the HitFinder Chemical Library, and identified AJO14 as a lead compound that binds to NUPR1, without having favorable affinity towards hERG. AJO14 induced cell death through apoptosis, necroptosis, and parthanatos (induced by the poly-ADP ribose polymerase (PARP) overactivation), driven by mitochondrial catastrophe and decreased ATP production. This process seemed to be mediated by the hyperPARylation (an excessive modification of proteins by PARP, leading to cellular dysfunction), as it could be reversed by Olaparib, a PARP inhibitor. In xenografted mice, AJO14 demonstrated a dose-dependent tumor reduction activity. Furthermore, we attempted to improve the anti-cancer properties of AJO14 by molecular modification of the lead compound. Among the 51 candidates obtained and tested, 8 compounds exhibited a significant increase in efficacy and have been retained for further studies, especially LZX-2-73. These AJO14-derived compounds offer potent NUPR1 inhibition for pancreatic cancer treatment, without cardiotoxicity concerns.
Collapse
Affiliation(s)
- Xi Liu
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ana Jimenez-Alesanco
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
| | - Zexian Li
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- CNR NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, Via P.Bucci, Cubo 31 C, 87036, Rende, Italy
| | - José L Neira
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- IDIBE, Universidad Miguel Hernández, Edificio Torregaitán, Avda. del Ferrocarril s/n, 03202, Elche, Alicante, Spain
| | - Matías Estaras
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Ling Peng
- Aix Marseille Université, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille, UMR7325, Parc Scientifique et Technologique de Luminy, Equipe labélisée Ligue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France
| | - Eduardo Chuluyan
- Center for Pharmacological and Botanical Studies, Faculty of Medicine, National Council for Scientific and Technical Research, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
- Department of Microbiology, Parasitology and Immunology, Faculty of Medicine, Buenos Aires University, C1121ABG, Buenos Aires, Argentina
| | - Juan Garona
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Florencia Gottardo
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina
| | - Adrián Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Yi Xia
- Chongqing Key Lab oratory of Natural Product Synthesis and Drug Research, School ofPharmaceutical Sciences, Chongqing University, No.55 Daxuecheng South Road, Chongqing, 401331, People's Republic of China
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), 50018, Zaragoza, Spain
- Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfe rmedadesHepáticas y Digestivas (CIBERehd), Madrid, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, Zaragoza, Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Aix Marseille Université and Institut Paoli Calmettes, Parc Scientifique etTechnologique de Luminy, Equipe labéliséeLigue Nationale contre le cancer, 163 Avenue de Luminy, 13288, Marseille, France.
- Hospital de Alta Complejidad El Cruce, Florencio Varela, Buenos Aires, Argentina.
- University Arturo Jauretche, Florencio Varela, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Neira JL, Rizzuti B, Abian O, Velazquez-Campoy A. Isolated auto-citrullinated regions of PADI4 associate to the intact protein without altering their disordered conformation. Biophys Chem 2024; 312:107288. [PMID: 38991454 DOI: 10.1016/j.bpc.2024.107288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/19/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024]
Abstract
PADI4 is one of the human isoforms of a group of enzymes intervening in the conversion of arginine to citrulline. It is involved in the development of several types of tumors, as well as other immunological illnesses, such as psoriasis, multiple sclerosis, or rheumatoid arthritis. PADI4 auto-citrullinates in several regions of its sequence, namely in correspondence of residues Arg205, Arg212, Arg218, and Arg383. We wanted to study whether the citrullinated moiety affects the conformation of nearby regions and its binding to intact PADI4. We designed two series of synthetic peptides comprising either the wild-type or the relative citrullinated versions of such regions - i.e., a first series of peptides comprising the first three arginines, and a second series comprising Arg383. We studied their conformational properties in isolation by using fluorescence, far-ultraviolet (UV) circular dichroism (CD), and 2D1H NMR. Furthermore, we characterized the binding of the wild-type and citrullinated peptides in the two series to the intact PADI4, by using isothermal titration calorimetry (ITC), fluorescence, and biolayer interferometry (BLI), as well as by molecular docking simulations. We observed that citrullination did not alter the local conformational propensities of the isolated peptides. Nevertheless, for all the peptides in the two series, citrullination slowed down the kinetic koff rates of the binding reaction to PADI4, probably due to differences in electrostatic effects compared to the presence of arginine. The affinities of PADI4 for unmodified peptides were slightly larger than those of the corresponding citrullinated ones in the two series, but they were all within the same range, indicating that there were no relevant variations in the thermodynamics of binding due to sequence effects. These results highlight details of the self-citrullination of PADI4 and, more generally, of possible auto-catalytic mechanisms taking place in vivo for other citrullinating enzymes or, alternatively, in proteins undergoing citrullination passively.
Collapse
Affiliation(s)
- José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche, Alicante, Spain; Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Bruno Rizzuti
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
| | - Olga Abian
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Adrian Velazquez-Campoy
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, 50018 Zaragoza, Spain; Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain; Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| |
Collapse
|
3
|
Liu S, Costa M, Ortiz A. Chronic nickel exposure alters extracellular vesicles to mediate cancer progression via sustained NUPR1 expression. J Inorg Biochem 2024; 252:112477. [PMID: 38199052 DOI: 10.1016/j.jinorgbio.2023.112477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/18/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
Cancer cells release extracellular vesicles (EVs) that participate in altering the proximal tumor environment and distal tissues to promote cancer progression. Chronic exposure to nickel (Ni), a human group I carcinogen, results in epigenetic changes that promotes epithelial to mesenchymal transition (EMT). Cells that undergo EMT demonstrate various molecular changes, including elevated levels of the mesenchymal cadherin N-cadherin (N-CAD) and the transcription factor Zinc finger E-box binding homeobox 1 (ZEB1). Moreover, the molecular changes following EMT induce changes in cellular behavior, including anchorage-independent growth, which contributes to cancer cells detaching from tumor bulk during the metastatic process. Here, we present data demonstrating that EVs from Ni-exposed cells induce EMT in recipient BEAS-2B cells in the absence of Ni. Moreover, we show evidence that the EVs from Ni-altered cells package the transcription factor nuclear protein 1 (NUPR1), a transcription factor associated with Ni exposure and cancer progression. Moreover, our data demonstrates that the NUPR1 in the EVs becomes part of the recipient cell proteomic milieu and carry the NUPR1 to the nuclear space of the recipient cell. Interestingly, knockdown of NUPR1 in Ni-transformed cells suppressed NUPR1 packaging in the EVs, and nanoparticle tracking analysis (NTA) demonstrated decreased EV release. Reduction of NUPR1 in EVs resulted in diminished EMT capacity that resulted in decreased anchorage independent growth. This study is the first to demonstrate the role of NUPR1 in extracellular vesicle-mediate cancer progression.
Collapse
Affiliation(s)
- Shan Liu
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States of America
| | - Max Costa
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States of America
| | - Angelica Ortiz
- Department of Medicine, Division of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10010, United States of America.
| |
Collapse
|
4
|
Barar E, Shi J. Genome, Metabolism, or Immunity: Which Is the Primary Decider of Pancreatic Cancer Fate through Non-Apoptotic Cell Death? Biomedicines 2023; 11:2792. [PMID: 37893166 PMCID: PMC10603981 DOI: 10.3390/biomedicines11102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid tumor characterized by poor prognosis and resistance to treatment. Resistance to apoptosis, a cell death process, and anti-apoptotic mechanisms, are some of the hallmarks of cancer. Exploring non-apoptotic cell death mechanisms provides an opportunity to overcome apoptosis resistance in PDAC. Several recent studies evaluated ferroptosis, necroptosis, and pyroptosis as the non-apoptotic cell death processes in PDAC that play a crucial role in the prognosis and treatment of this disease. Ferroptosis, necroptosis, and pyroptosis play a crucial role in PDAC development via several signaling pathways, gene expression, and immunity regulation. This review summarizes the current understanding of how ferroptosis, necroptosis, and pyroptosis interact with signaling pathways, the genome, the immune system, the metabolism, and other factors in the prognosis and treatment of PDAC.
Collapse
Affiliation(s)
- Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
5
|
Saurabh S, Nadendla K, Purohit SS, Sivakumar PM, Cetinel S. Fuzzy Drug Targets: Disordered Proteins in the Drug-Discovery Realm. ACS OMEGA 2023; 8:9729-9747. [PMID: 36969402 PMCID: PMC10034788 DOI: 10.1021/acsomega.2c07708] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Intrinsically disordered proteins (IDPs) and regions (IDRs) form a large part of the eukaryotic proteome. Contrary to the structure-function paradigm, the disordered proteins perform a myriad of functions in vivo. Consequently, they are involved in various disease pathways and are plausible drug targets. Unlike folded proteins, that have a defined structure and well carved out drug-binding pockets that can guide lead molecule selection, the disordered proteins require alternative drug-development methodologies that are based on an acceptable picture of their conformational ensemble. In this review, we discuss various experimental and computational techniques that contribute toward understanding IDP "structure" and describe representative pursuances toward IDP-targeting drug development. We also discuss ideas on developing rational drug design protocols targeting IDPs.
Collapse
Affiliation(s)
- Suman Saurabh
- Molecular
Sciences Research Hub, Department of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Karthik Nadendla
- Center
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, Lensfield
Road, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Shubh Sanket Purohit
- Department
of Clinical Haematology, Sahyadri Superspeciality
Hospital, Pune, Maharashtra 411038, India
| | - Ponnurengam Malliappan Sivakumar
- Institute
of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School
of Medicine and Pharmacy, Duy Tan University, Da Nang 550000, Vietnam
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
| | - Sibel Cetinel
- Nanotechnology
Research and Application Center (SUNUM), Sabanci University, Istanbul 34956, Turkey
- Faculty of
Engineering and Natural Sciences, Molecular Biology, Genetics and
Bioengineering Program, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
6
|
Araujo-Abad S, Neira JL, Rizzuti B, García-Morales P, de Juan Romero C, Santofimia-Castaño P, Iovanna J. Intrinsically Disordered Chromatin Protein NUPR1 Binds to the Enzyme PADI4. J Mol Biol 2023; 435:168033. [PMID: 36858171 DOI: 10.1016/j.jmb.2023.168033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/18/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023]
Abstract
The nuclear protein 1 (NUPR1) is an intrinsically disordered protein involved in stress-mediated cellular conditions. Its paralogue nuclear protein 1-like (NUPR1L) is p53-regulated, and its expression down-regulates that of the NUPR1 gene. Peptidyl-arginine deiminase 4 (PADI4) is an isoform of a family of enzymes catalyzing arginine to citrulline conversion; it is also involved in stress-mediated cellular conditions. We characterized the interaction between NUPR1 and PADI4 in vitro, in silico, and in cellulo. The interaction of NUPR1 and PADI4 occurred with a dissociation constant of 18 ± 6 μM. The binding region of NUPR1, mapped by NMR, was a hydrophobic polypeptide patch surrounding the key residue Ala33, as pinpointed by: (i) computational results; and, (ii) site-directed mutagenesis of residues of NUPR1. The association between PADI4 and wild-type NUPR1 was also assessed in cellulo by using proximity ligation assays (PLAs) and immunofluorescence (IF), and it occurred mainly in the nucleus. Moreover, binding between NUPR1L and PADI4 also occurred in vitro with an affinity similar to that of NUPR1. Molecular modelling provided information on the binding hot spot for PADI4. This is an example of a disordered partner of PADI4, whereas its other known interacting proteins are well-folded. Altogether, our results suggest that the NUPR1/PADI4 complex could have crucial functions in modulating DNA-repair, favoring metastasis, or facilitating citrullination of other proteins.
Collapse
Affiliation(s)
- Salomé Araujo-Abad
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Centro de Biotecnología, Universidad Nacional de Loja, Avda. Pío Jaramillo Alvarado s/n, Loja, 110111 Loja, Ecuador
| | - José L Neira
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain.
| | - Bruno Rizzuti
- Institute of Biocomputation and Physics of Complex Systems - Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain; CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
| | | | - Camino de Juan Romero
- IDIBE, Universidad Miguel Hernández, 03202 Elche (Alicante), Spain; Unidad de Investigación, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO), Hospital General Universitario de Elche, Camí de l'Almazara 11, 03203 Elche (Alicante), Spain
| | - Patricia Santofimia-Castaño
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France.
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, 13288 Marseille, France
| |
Collapse
|
7
|
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Sustainable Biodegradable Biopolymer-Based Nanoparticles for Healthcare Applications. Int J Mol Sci 2023; 24:3188. [PMID: 36834596 PMCID: PMC9964453 DOI: 10.3390/ijms24043188] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Biopolymeric nanoparticles are gaining importance as nanocarriers for various biomedical applications, enabling long-term and controlled release at the target site. Since they are promising delivery systems for various therapeutic agents and offer advantageous properties such as biodegradability, biocompatibility, non-toxicity, and stability compared to various toxic metal nanoparticles, we decided to provide an overview on this topic. Therefore, the review focuses on the use of biopolymeric nanoparticles of animal, plant, algal, fungal, and bacterial origin as a sustainable material for potential use as drug delivery systems. A particular focus is on the encapsulation of many different therapeutic agents categorized as bioactive compounds, drugs, antibiotics, and other antimicrobial agents, extracts, and essential oils into protein- and polysaccharide-based nanocarriers. These show promising benefits for human health, especially for successful antimicrobial and anticancer activity. The review article, divided into protein-based and polysaccharide-based biopolymeric nanoparticles and further according to the origin of the biopolymer, enables the reader to select the appropriate biopolymeric nanoparticles more easily for the incorporation of the desired component. The latest research results from the last five years in the field of the successful production of biopolymeric nanoparticles loaded with various therapeutic agents for healthcare applications are included in this review.
Collapse
Affiliation(s)
- Nika Kučuk
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Mateja Primožič
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Željko Knez
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| | - Maja Leitgeb
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, 2000 Maribor, Slovenia
| |
Collapse
|
8
|
Rizzuti B, Iovanna JL, Neira JL. Deciphering the Binding of the Nuclear Localization Sequence of Myc Protein to the Nuclear Carrier Importin α3. Int J Mol Sci 2022; 23:ijms232315333. [PMID: 36499669 PMCID: PMC9739371 DOI: 10.3390/ijms232315333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The oncoprotein Myc is a transcription factor regulating global gene expression and modulating cell proliferation, apoptosis, and metabolism. Myc has a nuclear localization sequence (NLS) comprising residues Pro320 to Asp328, to allow for nuclear translocation. We designed a peptide comprising such region and the flanking residues (Ala310-Asn339), NLS-Myc, to study, in vitro and in silico, the ability to bind importin α3 (Impα3) and its truncated species (ΔImpα3) depleted of the importin binding domain (IBB), by using fluorescence, circular dichroism (CD), biolayer interferometry (BLI), nuclear magnetic resonance (NMR), and molecular simulations. NLS-Myc interacted with both importin species, with affinity constants of ~0.5 µM (for Impα3) and ~60 nM (for ΔImpα3), as measured by BLI. The molecular simulations predicted that the anchoring of NLS-Myc took place in the major binding site of Impα3 for the NLS of cargo proteins. Besides clarifying the conformational behavior of the isolated NLS of Myc in solution, our results identified some unique properties in the binding of this localization sequence to the nuclear carrier Impα3, such as a difference in the kinetics of its release mechanism depending on the presence or absence of the IBB domain.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Correspondence: (B.R.); (J.L.N.)
| | - Juan L. Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Institut Paoli-Calmettes, Aix-Marseille Université, 13288 Marseille, France
| | - José L. Neira
- Instituto de Biocomputación y Física de Sistemas Complejos–Unidad Mixta GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDIBE), Universidad Miguel Hernández, 03202 Elche, Spain
- Correspondence: (B.R.); (J.L.N.)
| |
Collapse
|
9
|
Intrinsically Disordered Proteins: An Overview. Int J Mol Sci 2022; 23:ijms232214050. [PMID: 36430530 PMCID: PMC9693201 DOI: 10.3390/ijms232214050] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Many proteins and protein segments cannot attain a single stable three-dimensional structure under physiological conditions; instead, they adopt multiple interconverting conformational states. Such intrinsically disordered proteins or protein segments are highly abundant across proteomes, and are involved in various effector functions. This review focuses on different aspects of disordered proteins and disordered protein regions, which form the basis of the so-called "Disorder-function paradigm" of proteins. Additionally, various experimental approaches and computational tools used for characterizing disordered regions in proteins are discussed. Finally, the role of disordered proteins in diseases and their utility as potential drug targets are explored.
Collapse
|
10
|
Rizzuti B. Nanomedicines Meet Disordered Proteins: A Shift from Traditional Materials and Concepts to Innovative Polymers. J Pers Med 2022; 12:jpm12101662. [PMID: 36294800 PMCID: PMC9604919 DOI: 10.3390/jpm12101662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 09/30/2022] [Indexed: 11/16/2022] Open
Abstract
Water-soluble nanomedicines have been widely studied for the targeted delivery of drugs for a very long time. As a notable example, biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers have been under investigation for nearly half a century. In particular, anticancer drug carriers have been developed under the assumption that the leading mechanism with a therapeutic impact on solid tumors is the enhanced permeability and retention (EPR) effect, which dates back more than three decades. Nevertheless, these (and other) materials and concepts have encountered several barriers in their successful translation into clinical practice, and future nanomedicines need improvements in both passive and active targeting to their site of action. Notions borrowed from recent studies on intrinsically disordered proteins (IDPs) seem promising for enhancing the self-assembly, stimuli-responsiveness, and recognition properties of protein/peptide-based copolymers. Accordingly, IDP-based nanomedicines are ready to give new impetus to more traditional research in this field.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, Sede Secondaria Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy
- Institute of Biocomputation and Physics of Complex Systems-Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
11
|
Minetti CA, Remeta DP. Forces Driving a Magic Bullet to Its Target: Revisiting the Role of Thermodynamics in Drug Design, Development, and Optimization. Life (Basel) 2022; 12:1438. [PMID: 36143474 PMCID: PMC9504344 DOI: 10.3390/life12091438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/27/2022] Open
Abstract
Drug discovery strategies have advanced significantly towards prioritizing target selectivity to achieve the longstanding goal of identifying "magic bullets" amongst thousands of chemical molecules screened for therapeutic efficacy. A myriad of emerging and existing health threats, including the SARS-CoV-2 pandemic, alarming increase in bacterial resistance, and potentially fatal chronic ailments, such as cancer, cardiovascular disease, and neurodegeneration, have incentivized the discovery of novel therapeutics in treatment regimens. The design, development, and optimization of lead compounds represent an arduous and time-consuming process that necessitates the assessment of specific criteria and metrics derived via multidisciplinary approaches incorporating functional, structural, and energetic properties. The present review focuses on specific methodologies and technologies aimed at advancing drug development with particular emphasis on the role of thermodynamics in elucidating the underlying forces governing ligand-target interaction selectivity and specificity. In the pursuit of novel therapeutics, isothermal titration calorimetry (ITC) has been utilized extensively over the past two decades to bolster drug discovery efforts, yielding information-rich thermodynamic binding signatures. A wealth of studies recognizes the need for mining thermodynamic databases to critically examine and evaluate prospective drug candidates on the basis of available metrics. The ultimate power and utility of thermodynamics within drug discovery strategies reside in the characterization and comparison of intrinsic binding signatures that facilitate the elucidation of structural-energetic correlations which assist in lead compound identification and optimization to improve overall therapeutic efficacy.
Collapse
Affiliation(s)
- Conceição A. Minetti
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| | - David P. Remeta
- Department of Chemistry and Chemical Biology, Rutgers—The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Human Enzyme PADI4 Binds to the Nuclear Carrier Importin α3. Cells 2022; 11:cells11142166. [PMID: 35883608 PMCID: PMC9319256 DOI: 10.3390/cells11142166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/13/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
PADI4 is a peptidyl-arginine deiminase (PADI) involved in the conversion of arginine to citrulline. PADI4 is present in macrophages, monocytes, granulocytes, and several cancer cells. It is the only PADI family member observed within both the nucleus and the cytoplasm. PADI4 has a predicted nuclear localization sequence (NLS) comprising residues Pro56 to Ser83, to allow for nuclear translocation. Recent predictors also suggest that the region Arg495 to Ile526 is a possible NLS. To understand how PADI4 is involved in cancer, we studied the ability of intact PADI4 to bind importin α3 (Impα3), a nuclear transport factor that plays tumor-promoting roles in several cancers, and its truncated species (ΔImpα3) without the importin-binding domain (IBB), by using fluorescence, circular dichroism (CD), and isothermal titration calorimetry (ITC). Furthermore, the binding of two peptides, encompassing the first and the second NLS regions, was also studied using the same methods and molecular docking simulations. PADI4 interacted with both importin species, with affinity constants of ~1–5 µM. The isolated peptides also interacted with both importins. The molecular simulations predict that the anchoring of both peptides takes place in the major binding site of Impα3 for the NLS of cargo proteins. These findings suggest that both NLS regions were essentially responsible for the binding of PADI4 to the two importin species. Our data are discussed within the framework of a cell mechanism of nuclear transport that is crucial in cancer.
Collapse
|
13
|
Ahmed SS, Rifat ZT, Lohia R, Campbell AJ, Dunker AK, Rahman MS, Iqbal S. Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLoS Comput Biol 2022; 18:e1009911. [PMID: 35275927 PMCID: PMC8942211 DOI: 10.1371/journal.pcbi.1009911] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 03/23/2022] [Accepted: 02/10/2022] [Indexed: 01/21/2023] Open
Abstract
All proteomes contain both proteins and polypeptide segments that don’t form a defined three-dimensional structure yet are biologically active—called intrinsically disordered proteins and regions (IDPs and IDRs). Most of these IDPs/IDRs lack useful functional annotation limiting our understanding of their importance for organism fitness. Here we characterized IDRs using protein sequence annotations of functional sites and regions available in the UniProt knowledgebase (“UniProt features”: active site, ligand-binding pocket, regions mediating protein-protein interactions, etc.). By measuring the statistical enrichment of twenty-five UniProt features in 981 IDRs of 561 human proteins, we identified eight features that are commonly located in IDRs. We then collected the genetic variant data from the general population and patient-based databases and evaluated the prevalence of population and pathogenic variations in IDPs/IDRs. We observed that some IDRs tolerate 2 to 12-times more single amino acid-substituting missense mutations than synonymous changes in the general population. However, we also found that 37% of all germline pathogenic mutations are located in disordered regions of 96 proteins. Based on the observed-to-expected frequency of mutations, we categorized 34 IDRs in 20 proteins (DDX3X, KIT, RB1, etc.) as intolerant to mutation. Finally, using statistical analysis and a machine learning approach, we demonstrate that mutation-intolerant IDRs carry a distinct signature of functional features. Our study presents a novel approach to assign functional importance to IDRs by leveraging the wealth of available genetic data, which will aid in a deeper understating of the role of IDRs in biological processes and disease mechanisms.
Collapse
Affiliation(s)
- Shehab S. Ahmed
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Zaara T. Rifat
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
| | - Ruchi Lohia
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Arthur J. Campbell
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - A. Keith Dunker
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - M. Sohel Rahman
- Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, ECE Building, West Palashi, Dhaka-1205, Bangladesh
- * E-mail: (MSR); (SI)
| | - Sumaiya Iqbal
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- * E-mail: (MSR); (SI)
| |
Collapse
|
14
|
Rizzuti B. Molecular simulations of proteins: From simplified physical interactions to complex biological phenomena. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2022; 1870:140757. [PMID: 35051666 DOI: 10.1016/j.bbapap.2022.140757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/08/2022] [Accepted: 01/10/2022] [Indexed: 12/22/2022]
Abstract
Molecular dynamics simulation is the most popular computational technique for investigating the structural and dynamical behaviour of proteins, in search of the molecular basis of their function. Far from being a completely settled field of research, simulations are still evolving to best capture the essential features of the atomic interactions that govern a protein's inner motions. Modern force fields are becoming increasingly accurate in providing a physical description adequate to this purpose, and allow us to model complex biological systems under fairly realistic conditions. Furthermore, the use of accelerated sampling techniques is improving our access to the observation of progressively larger molecular structures, longer time scales, and more hidden functional events. In this review, the basic principles of molecular dynamics simulations and a number of key applications in the area of protein science are summarized, and some of the most important results are discussed. Examples include the study of the structure, dynamics and binding properties of 'difficult' targets, such as intrinsically disordered proteins and membrane receptors, and the investigation of challenging phenomena like hydration-driven processes and protein aggregation. The findings described provide an overall picture of the current state of this research field, and indicate new perspectives on the road ahead to the upcoming future of molecular simulations.
Collapse
Affiliation(s)
- Bruno Rizzuti
- CNR-NANOTEC, SS Rende (CS), Department of Physics, University of Calabria, 87036 Rende, Italy; Institute for Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, University of Zaragoza, 50018 Zaragoza, Spain.
| |
Collapse
|
15
|
The Amazing World of IDPs in Human Diseases II. Biomolecules 2022; 12:biom12030369. [PMID: 35327561 PMCID: PMC8945807 DOI: 10.3390/biom12030369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 12/10/2022] Open
|