1
|
Li Q, Tintut Y, Demer LL, Vazquez-Padron RI, Bendeck MP, Hsu JJ. Collagen VIII in vascular diseases. Matrix Biol 2024; 133:64-76. [PMID: 39154854 PMCID: PMC11473120 DOI: 10.1016/j.matbio.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/20/2024]
Abstract
Collagens have dual functions in the extracellular matrix (ECM), acting as both structural components and signaling molecules in matricellular communication. Although collagen molecules share a common triple helix motif, the supramolecular organization helps classify them into nearly 30 different types of collagens. Collagen type VIII is a non-fibrillar, short-chain, network-forming collagen that is expressed throughout the vasculature. Collagen VIII expression is aberrant in cardiovascular, lung, and renal disease, as well as in several different types of cancer. It plays active roles in angiogenesis, vessel injury repair, maintenance of arterial compliance, atherosclerotic plaque formation and stability modulation, fibrosis, and ECM remodeling. This review presents an overview of the characteristics of collagen VIII in vascular-related disorders, from clinical significance to laboratory studies, with a major focus on highlighting the signaling properties of collagen VIII in the vascular ECM. The expression patterns of collagen VIII in human diseases and experimental animal models highlight the protein's important yet underexplored functions. A deeper understanding of its mechanisms and downstream signaling pathways may pave the way for translational and tissue engineering applications of collagen VIII.
Collapse
Affiliation(s)
- Qian Li
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Yin Tintut
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Orthopedic Surgery, Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Linda L Demer
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Departments of Medicine, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA
| | - Roberto I Vazquez-Padron
- Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida, USA; Bruce W. Carter Veteran Affairs Medical Center, Miami, Florida, USA
| | - Michelle P Bendeck
- Departments of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada; Ted Rogers Heart Research Centre, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey J Hsu
- Departments of Physiology, Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Bioengineering University of California, Los Angeles, Los Angeles, California, USA; Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, California, USA.
| |
Collapse
|
2
|
Zheng H, Bian M, Zhou Z, Shi Y, Shen M, Wang M, Jiang W, Shao C, Tang R, Pan H, He J, Fu B, Wu Z. Small Charged Molecule-Mediated Fibrillar Mineralization: Implications for Ectopic Calcification. ACS NANO 2024; 18:23537-23552. [PMID: 39133543 DOI: 10.1021/acsnano.4c07378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Numerous small biomolecules exist in the human body and play roles in various biological and pathological processes. Small molecules are believed not to induce intrafibrillar mineralization alone. They are required to work in synergy with noncollagenous proteins (NCPs) and their analogs, e.g. polyelectrolytes, for inducing intrafibrillar mineralization, as the polymer-induced liquid-like precursor (PILP) process has been well-documented. In this study, we demonstrate that small charged molecules alone, such as sodium tripolyphosphate, sodium citrate, and (3-aminopropyl) triethoxysilane, could directly mediate fibrillar mineralization. We propose that small charged molecules might be immobilized in collagen fibrils to form the polyelectrolyte-like collagen complex (PLCC) via hydrogen bonds. The PLCC could attract CaP precursors along with calcium and phosphate ions for inducing mineralization without any polyelectrolyte additives. The small charged molecule-mediated mineralization process was evidenced by Cryo-TEM, AFM, SEM, FTIR, ICP-OES, etc., as the PLCC exhibited both characteristic features of collagen fibrils and polyelectrolyte with increased charges, hydrophilicity, and density. This might hint at one mechanism of pathological biomineralization, especially for understanding the ectopic calcification process.
Collapse
Affiliation(s)
- Haiyan Zheng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Mengyao Bian
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zihuai Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ying Shi
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Minjian Shen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Manting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Wenxiang Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Changyu Shao
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Ruikang Tang
- Center for Biomaterials and Biopathways, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Haihua Pan
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Jianxiang He
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Baiping Fu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| | - Zhifang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, Zhejiang 310000, China
| |
Collapse
|
3
|
Chen M, Neverova N, Xu S, Suwannaphoom K, Lluri G, Tamboline M, Duarte S, Fishbein MC, Luo Y, Packard RRS. Invasive electrochemical impedance spectroscopy with phase delay for experimental atherosclerosis phenotyping. FASEB J 2024; 38:e23700. [PMID: 38787606 DOI: 10.1096/fj.202302544rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies. We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Male New Zealand White rabbits (n = 16) were placed on a high-fat diet, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68Ga-DOTATATE, 18F-NaF, and 18F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal-corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histology. Analyses were performed blindly. EIS impedance was associated with markers of plaque activity including macrophage infiltration (r = .813, p = .008) and macrophage/smooth muscle cell (SMC) ratio (r = .813, p = .026). Moreover, EIS phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r = .883, p = .004) and %stenosis (r = .901, p = .002), similar to IVUS. 68Ga-DOTATATE correlated with intimal macrophage infiltration (r = .861, p = .003) and macrophage/SMC ratio (r = .831, p = .021), 18F-NaF with SMC infiltration (r = -.842, p = .018), and 18F-FDG correlated with macrophage/SMC ratio (r = .787, p = .036). EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS to comprehensively evaluate human coronary artery disease.
Collapse
Affiliation(s)
- Michael Chen
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Natalia Neverova
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, California, USA
| | - Shili Xu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Krit Suwannaphoom
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Gentian Lluri
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
| | - Mikayla Tamboline
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Sandra Duarte
- Division of Laboratory and Animal Medicine, University of California, Los Angeles, California, USA
| | - Michael C Fishbein
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - René R Sevag Packard
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Ronald Reagan UCLA Medical Center, Los Angeles, California, USA
- West Los Angeles Veterans Affairs Medical Center, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, California, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Chen R, Li J, Sheng Z, Zhou J, Wang Y, Zhao X, Li N, Liu W, Liu C, Zhou P, Chen Y, Yan S, Song L, Yan H, Zhao H. Associations Between Resolvin D1 and Culprit Plaque Morphologies: An Optical Coherence Tomography Study in Patients with ST-Segment Elevation Myocardial Infarction. J Inflamm Res 2023; 16:6457-6467. [PMID: 38164164 PMCID: PMC10758160 DOI: 10.2147/jir.s433404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024] Open
Abstract
Background As a specialized pro-resolving lipid mediator, resolvin D1 (RvD1) inhibits atherosclerosis progression in vivo by reducing regional oxidative stress and chronic inflammation. However, it is unclear how RvD1 is involved in human coronary artery disease. This study aims to investigate the association between plasma levels of RvD1 and culprit-plaque characteristics in patients with ST-segment elevation myocardial infarction (STEMI). Methods A total of 240 STEMI patients undergoing optical coherence tomography (OCT) examination were analyzed. RvD1 levels were measured in patient plasma samples using an enzyme-linked immunosorbent assay. Logistic regression was performed to assess the association between RvD1 levels and various culprit plaque morphologies, and the receiver operating curve was used to search for an optimal cutoff threshold to predict certain pathological features. Results The median RvD1 level was 129.7 (56.6-297.8) pg/mL. According to multivariable logistic regression, high RvD1 was associated with plaque rupture (≥111.5 pg/mL, odds ratio [OR]: 2.09, 95% confidence interval [CI]: 1.20-3.66, P = 0.010), healed plaques (≥246.4 pg/mL, OR: 2.17, 95% CI: 1.11-4.24, P = 0.023), and calcification (≥293.38 pg/mL, OR: 2.10, 95% CI: 1.21-3.66, P = 0.008) at culprit lesions. Conclusion Increased levels of RvD1 were associated with higher instability of coronary atherosclerotic plaques in STEMI patients.
Collapse
Affiliation(s)
- Runzhen Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| | - Jiannan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Zhaoxue Sheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, People’s Republic of China
| | - Jinying Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Ying Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Xiaoxiao Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Nan Li
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Weida Liu
- Medical Research Center, Peking Union Medical College Hospital, Beijing, People’s Republic of China
| | - Chen Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Peng Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Yi Chen
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Shaodi Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
| | - Li Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hongbing Yan
- Fuwai Hospital, Chinese Academy of Medical Sciences, Shenzhen, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| | - Hanjun Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Coronary Heart Disease Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Molinuevo MS, Cortizo AM, Sedlinsky C. Effects of advanced glycation end-products, diabetes and metformin on the osteoblastic transdifferentiation capacity of vascular smooth muscle cells: In vivo and in vitro studies. J Diabetes Complications 2023; 37:108626. [PMID: 37839167 DOI: 10.1016/j.jdiacomp.2023.108626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/27/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
AIMS Our objective was to study the vascular smooth muscle cells (VSMC) osteoblastic transdifferentiation in AGE exposed cells or those from diabetic animals, and its response to metformin treatment. METHODS VSMC were obtained from non-diabetic rats, grown with or without AGE; while VSMC of in vivo-ex vivo studies were obtained from non-diabetic control animals (C), diabetic (D), C treated with metformin (M) and D treated with metformin (D-M). We studied the osteoblastic differentiation by evaluating alkaline phosphatase (ALP), type I collagen (Col) and mineral deposit. RESULTS In vitro, AGE increased proliferation, migration, and osteoblastic differentiation of VSMC. Metformin cotreatment prevented the AGE induced proliferation and migration. Both AGE and metformin stimulated the expression of ALP and Col. AGE induced mineralization was prevented by metformin. VSMC from D expressed a higher production of Col and ALP. Those from D-M showed an ALP increase vs C and M, and a partial decrease vs D. Cultured in osteogenic medium, ALP, Col and mineralization increased in D vs C, remained unchanged in M, and were prevented in D-M animals. CONCLUSION Both AGE and DM favor VSMC differentiation towards the osteogenic phenotype and this effect can be prevented by metformin.
Collapse
Affiliation(s)
- María Silvina Molinuevo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina
| | - Ana María Cortizo
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina.
| | - Claudia Sedlinsky
- Laboratorio de Investigaciones en Osteopatías y Metabolismo Mineral UNLP-CICPBA, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 50 y 115, 1900 La Plata, Argentina.
| |
Collapse
|
6
|
Chen M, Neverova N, Xu S, Suwannaphoom K, Lluri G, Tamboline M, Duarte S, Fishbein MC, Luo Y, Packard RRS. Flexible 3-D Electrochemical Impedance Spectroscopy Sensors Incorporating Phase Delay for Comprehensive Characterization of Atherosclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558681. [PMID: 37786712 PMCID: PMC10541620 DOI: 10.1101/2023.09.20.558681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background Distinguishing quiescent from rupture-prone atherosclerotic lesions has significant translational and clinical implications. Electrochemical impedance spectroscopy (EIS) characterizes biological tissues by assessing impedance and phase delay responses to alternating current at multiple frequencies.We evaluated invasive 6-point stretchable EIS sensors over a spectrum of experimental atherosclerosis and compared results with intravascular ultrasound (IVUS), molecular positron emission tomography (PET) imaging, and histology. Methods Male New Zealand White rabbits (n=16) were placed on a high-fat diet for 4 or 8 weeks, with or without endothelial denudation via balloon injury of the infrarenal abdominal aorta. Rabbits underwent in vivo micro-PET imaging of the abdominal aorta with 68 Ga-DOTATATE, 18 F-NaF, and 18 F-FDG, followed by invasive interrogation via IVUS and EIS. Background signal corrected values of impedance and phase delay were determined. Abdominal aortic samples were collected for histological analyses. Analyses were performed blindly. Results Phase delay correlated with anatomic markers of plaque burden, namely intima/media ratio (r=0.883 at 1 kHz, P =0.004) and %stenosis (r=0.901 at 0.25 kHz, P =0.002), similar to IVUS. Moreover, impedance was associated with markers of plaque activity including macrophage infiltration (r=0.813 at 10 kHz, P =0.008) and macrophage/smooth muscle cell (SMC) ratio (r=0.813 at 25 kHz, P =0.026). 68 Ga-DOTATATE correlated with intimal macrophage infiltration (r=0.861, P =0.003) and macrophage/SMC ratio (r=0.831, P =0.021), 18 F-NaF with SMC infiltration (r=-0.842, P =0.018), and 18 F-FDG correlated with macrophage/SMC ratio (r=0.787, P =0.036). Conclusions EIS with phase delay integrates key atherosclerosis features that otherwise require multiple complementary invasive and non-invasive imaging approaches to capture. These findings indicate the potential of invasive EIS as a comprehensive modality for evaluation of human coronary artery disease. GRAPHICAL ABSTRACT HIGHLIGHTS Electrochemical impedance spectroscopy (EIS) characterizes both anatomic features - via phase delay; and inflammatory activity - via impedance profiles, of underlying atherosclerosis.EIS can serve as an integrated, comprehensive metric for atherosclerosis evaluation by capturing morphological and compositional plaque characteristics that otherwise require multiple imaging modalities to obtain.Translation of these findings from animal models to human coronary artery disease may provide an additional strategy to help guide clinical management.
Collapse
|
7
|
Badin J, Rodenbeck S, McKenney-Drake ML, Sturek M. Multiphasic changes in smooth muscle Ca 2+ transporters during the progression of coronary atherosclerosis. CURRENT TOPICS IN MEMBRANES 2022; 90:95-121. [PMID: 36368876 DOI: 10.1016/bs.ctm.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Ischemic heart disease due to macrovascular atherosclerosis and microvascular dysfunction is the major cause of death worldwide and the unabated increase in metabolic syndrome is a major reason why this will continue. Intracellular free Ca2+ ([Ca2+]i) regulates a variety of cellular functions including contraction, proliferation, migration, and transcription. It follows that studies of vascular Ca2+ regulation in reductionist models and translational animal models are vital to understanding vascular health and disease. Swine with metabolic syndrome (MetS) develop the full range of coronary atherosclerosis from mild to severe disease. Intravascular imaging enables quantitative measurement of atherosclerosis in vivo, so viable coronary smooth muscle (CSM) cells can be dispersed from the arteries to enable Ca2+ transport studies in native cells. Transition of CSM from the contractile phenotype in the healthy swine to the proliferative phenotype in mild atherosclerosis was associated with increases in SERCA activity, sarcoplasmic reticulum Ca2+, and voltage-gated Ca2+ channel function. In vitro organ culture confirmed that SERCA activation induces CSM proliferation. Transition from the proliferative to a more osteogenic phenotype was associated with decreases in all three Ca2+ transporters. Overall, there was a biphasic change in Ca2+ transporters over the progression of atherosclerosis in the swine model and this was confirmed in CSM from failing explanted hearts of humans. A major determinant of endolysosome content in human CSM is the severity of atherosclerosis. In swine CSM endolysosome Ca2+ release occurred through the TPC2 channel. We propose a multiphasic change in Ca2+ transporters over the progression of coronary atherosclerosis.
Collapse
Affiliation(s)
- Jill Badin
- ZOLL Medical Corporation, Chelmsford, MA, United States
| | - Stacey Rodenbeck
- Department of Biology, Harding University, Searcy, AR, United States
| | - Mikaela L McKenney-Drake
- Butler University, Health Sciences Department, Pharmacy and Health Sciences, Indianapolis, IN, United States
| | - Michael Sturek
- Department of Anatomy, Cell Biology, & Physiology, Indiana University School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Lipids and lipoproteins have long been known to contribute to atherosclerosis and cardiovascular calcification. One theme of recent work is the study of lipoprotein (a) [Lp(a)], a lipoprotein particle similar to LDL-cholesterol that carries a long apoprotein tail and most of the circulating oxidized phospholipids. RECENT FINDINGS In-vitro studies show that Lp(a) stimulates osteoblastic differentiation and mineralization of vascular smooth muscle cells, while the association of Lp(a) with coronary artery calcification continues to have varying results, possibly because of the widely varying threshold levels of Lp(a) chosen for association analyses. Another emerging area in the field of cardiovascular calcification is pathological endothelial-to-mesenchymal transition (EndMT), the process whereby endothelial cell transition into multipotent mesenchymal cells, some of which differentiate into osteochondrogenic cells and mineralize. The effects of lipids and lipoproteins on EndMT suggest that they modulate cardiovascular calcification through multiple mechanisms. There are also emerging trends in imaging of calcific vasculopathy, including: intravascular optical coherence tomography for quantifying plaque characteristics, PET with a radiolabeled NaF tracer, with either CT or MRI to detect coronary plaque vulnerability. SUMMARY Recent work in this field includes studies of Lp(a), EndMT, and new imaging techniques.
Collapse
Affiliation(s)
- Jeffrey J Hsu
- Department of Medicine
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Yin Tintut
- Department of Medicine
- Department of Physiology
- Department of Orthopaedic Surgery
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| | - Linda L Demer
- Department of Medicine
- Department of Physiology
- Department of Bioengineering, University of California
- Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California, USA
| |
Collapse
|
9
|
Periostin Augments Vascular Smooth Muscle Cell Calcification via β-Catenin Signaling. Biomolecules 2022; 12:biom12081157. [PMID: 36009051 PMCID: PMC9405747 DOI: 10.3390/biom12081157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/26/2022] Open
Abstract
Medial vascular calcification is common in chronic kidney disease (CKD) and is closely linked to hyperphosphatemia. Vascular smooth muscle cells (VSMCs) can take up pro-calcific properties and actively augment vascular calcification. Various pro-inflammatory mediators are able to promote VSMC calcification. In this study, we investigated the effects and mechanisms of periostin, a matricellular signaling protein, in calcifying human VSMCs and human serum samples. As a result, periostin induced the mRNA expression of pro-calcific markers in VSMCs. Furthermore, periostin augmented the effects of β-glycerophosphate on the expression of pro-calcific markers and aggravated the calcification of VSMCs. A periostin treatment was associated with an increased β-catenin abundance as well as the expression of target genes. The pro-calcific effects of periostin were ameliorated by WNT/β-catenin pathway inhibitors. Moreover, a co-treatment with an integrin αvβ3-blocking antibody blunted the pro-calcific effects of periostin. The silencing of periostin reduced the effects of β-glycerophosphate on the expression of pro-calcific markers and the calcification of VSMCs. Elevated serum periostin levels were observed in hemodialysis patients compared with healthy controls. These observations identified periostin as an augmentative factor in VSMC calcification. The pro-calcific effects of periostin involve integrin αvβ3 and the activation of the WNT/β-catenin pathway. Thus, the inhibition of periostin may be beneficial to reduce the burden of vascular calcification in CKD patients.
Collapse
|
10
|
Kosciuszek ND, Kalta D, Singh M, Savinova OV. Vitamin K antagonists and cardiovascular calcification: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:938567. [PMID: 36061545 PMCID: PMC9437425 DOI: 10.3389/fcvm.2022.938567] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Many patients treated with Vitamin K antagonists (VKA) for anticoagulation have concomitant vascular or valvular calcification. This meta-analysis aimed to evaluate a hypothesis that vascular and valvular calcification is a side-effect of VKA treatment. Methods We conducted a systematic literature search to identify studies that reported vascular or valvular calcification in patients treated with VKA. The associations between VKA use and calcification were analyzed with random-effects inverse variance models and reported as odds ratios (OR) and 95% confidence intervals (95% CI). In addition, univariate meta-regression analyses were utilized to identify any effect moderators. Results Thirty-five studies were included (45,757 patients; 6,251 VKA users). The median follow-up was 2.3 years [interquartile range (IQR) of 1.2–4.0]; age 66.2 ± 3.6 years (mean ± SD); the majority of participants were males [77% (IQR: 72–95%)]. VKA use was associated with an increased OR for coronary artery calcification [1.21 (1.08, 1.36), p = 0.001], moderated by the duration of treatment [meta-regression coefficient B of 0.08 (0.03, 0.13), p = 0.0005]. Extra-coronary calcification affecting the aorta, carotid artery, breast artery, and arteries of lower extremities, was also increased in VKA treated patients [1.86 (1.43, 2.42), p < 0.00001] and moderated by the author-reported statistical adjustments of the effect estimates [B: −0.63 (−1.19, −0.08), p = 0.016]. The effect of VKA on the aortic valve calcification was significant [3.07 (1.90, 4.96), p < 0.00001]; however, these studies suffered from a high risk of publication bias. Conclusion Vascular and valvular calcification are potential side effects of VKA. The clinical significance of these side effects on cardiovascular outcomes deserves further investigation.
Collapse
Affiliation(s)
- Nina D. Kosciuszek
- New York Institute of Technology, College of Osteopathic Medicine, Academic Medicine Scholar Program, OldWestbury, NY, United States
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Daniel Kalta
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Mohnish Singh
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Olga V. Savinova
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
- *Correspondence: Olga V. Savinova
| |
Collapse
|
11
|
Gelli R, Pucci V, Ridi F, Baglioni P. A study on biorelevant calciprotein particles: Effect of stabilizing agents on the formation and crystallization mechanisms. J Colloid Interface Sci 2022; 620:431-441. [DOI: 10.1016/j.jcis.2022.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
|