1
|
Fratila DN, Virvescu DI, Luchian I, Hancianu M, Baciu ER, Butnaru O, Budala DG. Advances and Functional Integration of Hydrogel Composites as Drug Delivery Systems in Contemporary Dentistry. Gels 2024; 10:661. [PMID: 39451314 PMCID: PMC11507597 DOI: 10.3390/gels10100661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
This study explores the recent advances of and functional insights into hydrogel composites, materials that have gained significant attention for their versatile applications across various fields, including contemporary dentistry. Hydrogels, known for their high water content and biocompatibility, are inherently soft but often limited by mechanical fragility. Key areas of focus include the customization of hydrogel composites for biomedical applications, such as drug delivery systems, wound dressings, and tissue engineering scaffolds, where improved mechanical properties and bioactivity are critical. In dentistry, hydrogels are utilized for drug delivery systems targeting oral diseases, dental adhesives, and periodontal therapies due to their ability to adhere to the mucosa, provide localized treatment, and support tissue regeneration. Their unique properties, such as mucoadhesion, controlled drug release, and stimuli responsiveness, make them ideal candidates for treating oral conditions. This review highlights both experimental breakthroughs and theoretical insights into the structure-property relationships within hydrogel composites, aiming to guide future developments in the design and application of these multifunctional materials in dentistry. Ultimately, hydrogel composites represent a promising frontier for advancing materials science with far-reaching implications in healthcare, environmental technology, and beyond.
Collapse
Affiliation(s)
- Dragos Nicolae Fratila
- Department of Oral Diagnosis, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dragos Ioan Virvescu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionut Luchian
- Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Monica Hancianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Elena Raluca Baciu
- Department of Dental Materials, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Oana Butnaru
- Department of Biophysics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Dana Gabriela Budala
- Department of Prosthodontics, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
2
|
El-Nablaway M, Rashed F, Taher ES, Atia GA, Foda T, Mohammed NA, Abdeen A, Abdo M, Hînda I, Imbrea AM, Taymour N, Ibrahim AM, Atwa AM, Ibrahim SF, Ramadan MM, Dinu S. Bioactive injectable mucoadhesive thermosensitive natural polymeric hydrogels for oral bone and periodontal regeneration. Front Bioeng Biotechnol 2024; 12:1384326. [PMID: 38863491 PMCID: PMC11166210 DOI: 10.3389/fbioe.2024.1384326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 06/13/2024] Open
Abstract
Periodontitis is an inflammation-related condition, caused by an infectious microbiome and host defense that causes damage to periodontium. The natural processes of the mouth, like saliva production and eating, significantly diminish therapeutic medication residency in the region of periodontal disease. Furthermore, the complexity and diversity of pathological mechanisms make successful periodontitis treatment challenging. As a result, developing enhanced local drug delivery technologies and logical therapy procedures provides the foundation for effective periodontitis treatment. Being biocompatible, biodegradable, and easily administered to the periodontal tissues, hydrogels have sparked substantial an intense curiosity in the discipline of periodontal therapy. The primary objective of hydrogel research has changed in recent years to intelligent thermosensitive hydrogels, that involve local adjustable sol-gel transformations and regulate medication release in reaction to temperature, we present a thorough introduction to the creation and efficient construction of new intelligent thermosensitive hydrogels for periodontal regeneration. We also address cutting-edge smart hydrogel treatment options based on periodontitis pathophysiology. Furthermore, the problems and prospective study objectives are reviewed, with a focus on establishing effective hydrogel delivery methods and prospective clinical applications.
Collapse
Affiliation(s)
- Mohammad El-Nablaway
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, Jordan
| | - Gamal A. Atia
- Department of Oral Medicine, Periodontology, and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia, Egypt
| | - Tarek Foda
- Oral Health Sciences Department, Temple University’s Kornberg School of Dentistry, Philadelphia, PA, United States
| | - Nourelhuda A. Mohammed
- Physiology and Biochemistry Department, Faculty of Medicine, Mutah University, Al Karak, Jordan
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Mohamed Abdo
- Department of Animal Histology and Anatomy, School of Veterinary Medicine, Badr University in Cairo (BUC), Cairo, Egypt
| | - Ioana Hînda
- Department of Biology, Faculty of Agriculture, University of Life Sciences “King Michael I” from Timișoara, Timișoara, Romania
| | - Ana-Maria Imbrea
- Department of Biotechnology, Faculty of Bioengineering of Animal Resources, University of Life Sciences “King Mihai I” from Timisoara, Timișoara, Romania
| | - Noha Taymour
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Ateya M. Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Port Said, Egypt
| | - Ahmed M. Atwa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Samah F. Ibrahim
- Department of Internal Medicine, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mahmoud M. Ramadan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Stefania Dinu
- Department of Pedodontics, Faculty of Dental Medicine, Victor Babes, University of Medicine and Pharmacy Timisoara, Timisoara, Romania
- Pediatric Dentistry Research Center, Faculty of Dental Medicine, Victor Babes University of Medicine and Pharmacy Timisoara, Timisoara, Romania
| |
Collapse
|
3
|
Li Q, Wang D, Xiao C, Wang H, Dong S. Advances in Hydrogels for Periodontitis Treatment. ACS Biomater Sci Eng 2024; 10:2742-2761. [PMID: 38639082 DOI: 10.1021/acsbiomaterials.4c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Periodontitis is a common condition characterized by a bacterial infection and the disruption of the body's immune-inflammatory response, which causes damage to the teeth and supporting tissues and eventually results in tooth loss. Current therapy involves the systemic and local administration of antibiotics. However, the existing treatments cannot exert effective, sustained release and maintain an effective therapeutic concentration of the drug at the lesion site. Hydrogels are used to treat periodontitis due to their low cytotoxicity, exceptional water retention capability, and controlled drug release profile. Hydrogels can imitate the extracellular matrix of periodontal cells while offering suitable sites to load antibiotics. This article reviews the utilization of hydrogels for periodontitis therapy based on the pathogenesis and clinical manifestations of the disease. Additionally, the latest therapeutic strategies for smart hydrogels and the main techniques for hydrogel preparation have been discussed. The information will aid in designing and preparing future hydrogels for periodontitis treatment.
Collapse
Affiliation(s)
- Qiqi Li
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Di Wang
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hao Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Shujun Dong
- The First Outpatient Department, Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, School and Hospital of Stomatology, Jilin University, Changchun 130021, China
| |
Collapse
|
4
|
Bertl K, Vlachou S, Pandis N, Zampelis A, Stavropoulos A. Repeated local delivery of hyaluronic acid gel as adjunctive treatment of residual pockets in periodontitis patients undergoing supportive periodontal care. A randomized controlled clinical trial. Clin Oral Investig 2024; 28:158. [PMID: 38376596 PMCID: PMC10879318 DOI: 10.1007/s00784-024-05505-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/09/2024] [Indexed: 02/21/2024]
Abstract
OBJECTIVES To assess the effect of hyaluronic acid (HyA) application as adjunct to re-instrumentation of residual pockets in patients undergoing regular supportive periodontal care (SPC). METHODS Chronic periodontitis patients (stage III and IV, grade B and C) with 4 interproximal residual pockets were randomly assigned to the test (HyA gel) or control (saline) group. After subgingival instrumentation, test or control substance was applied subgingivally, then daily supragingivally for 3 months, and if required a second time after subgingival re-instrumentation after 3 months. Clinical and patient reported outcome parameters were recorded every 3 months for 12 months. Pocket closure [probing pocket depth (PPD) ≤ 4mm with absence of bleeding on probing (BoP) at PPD = 4mm] was the main outcome parameter. RESULTS Fifty-six patients (221 experimental sites) were analysed. Pocket closure was achieved in 56.8 and 46.6% of the experimental sites in the test and control group, respectively (p > 0.05), while median PPD and PPD distribution (< 5mm/5mm/ > 5mm) differed significantly between groups in favour of the test group, at 12 months. Further, significantly fewer sites in the HyA group required re-instrumentation at 3 months, and sites in the HyA group showed a tendency for lower odds to remain diseased compared to the control group (OR 0.48, 95%CI 0.22-1.06). The odds for a site to remain diseased after 12 months increased significantly in the presence of plaque (OR 7.94, 95%CI 4.12-15.28), but in general, decreased significantly over time (OR 0.48, 95%CI 0.28-0.81). CONCLUSION Re-instrumentation of residual pockets in SPC patients, per se, leads to a significant increase in pocket closure over time; this was impeded by poor plaque control. Repeated local application of HyA results in fewer sites requiring re-instrumentation and might slightly improve the rate of pocket closure. (clinicaltrials.gov registration nr. NCT04792541). CLINICAL RELEVANCE HyA gel is easy to apply, well accepted by patients, and may have some positive effect in terms of fewer sites requiring re-instrumentation at 3 months and higher pocket closure rate at 12 months.
Collapse
Affiliation(s)
- Kristina Bertl
- Department of Periodontology, Dental Clinic, Faculty of Medicine, Sigmund Freud University Vienna, Freudplatz 3, 1020, Vienna, Austria
- Department of Periodontology, Blekinge Hospital, Hälsovägen, Byggnad 13, 371 41, Karlskrona, Sweden
| | - Stefania Vlachou
- Division of Regenerative Dental Medicine and Periodontology, CUMD, University of Geneva, Rue Michel-Servet 1, 1211, Genève 4, Switzerland
| | - Nikolaos Pandis
- Department of Orthodontics and Dentofacial Orthopedics, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Antonios Zampelis
- Private Practice, Drottninggatan 27, 652 25, Karlstad, Sweden
- Specialist Clinic for Endodontics and Periodontology, Public Dental Service, Värmland, Hagagatan 6, 652 20, Karlstad, Sweden
| | - Andreas Stavropoulos
- Department of Periodontology, Blekinge Hospital, Hälsovägen, Byggnad 13, 371 41, Karlskrona, Sweden.
- Periodontology, Faculty of Odontology, University of Malmö, Carl Gustafs väg 34, 205 06, Malmö, Sweden.
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, Bern, 3010, Switzerland.
| |
Collapse
|
5
|
Santos MS, dos Santos AB, Carvalho MS. New Insights in Hydrogels for Periodontal Regeneration. J Funct Biomater 2023; 14:545. [PMID: 37998114 PMCID: PMC10672517 DOI: 10.3390/jfb14110545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Periodontitis is a destructive inflammatory disease characterized by microbial infection that damages the tissues supporting the tooth (alveolar bone, gingiva, periodontal ligament, and cementum), ultimately resulting in the loss of teeth. The ultimate goal of periodontal therapy is to achieve the regeneration of all of the periodontal tissues. Thus, tissue engineering approaches have been evolving from simple membranes or grafts to more complex constructs. Hydrogels are highly hydrophilic polymeric networks with the ability to simulate the natural microenvironment of cells. In particular, hydrogels offer several advantages when compared to other forms of scaffolds, such as tissue mimicry and sustained drug delivery. Moreover, hydrogels can maintain a moist environment similar to the oral cavity. Hydrogels allow for precise placement and retention of regenerative materials at the defect site, minimizing the potential for off-target effects and ensuring that the treatment is focused on the specific defect site. As a mechanism of action, the sustained release of drugs presented by hydrogels allows for control of the disease by reducing the inflammation and attracting host cells to the defect site. Several therapeutic agents, such as antibiotics, anti-inflammatory and osteogenic drugs, have been loaded into hydrogels, presenting effective benefits in periodontal health and allowing for sustained drug release. This review discusses the causes and consequences of periodontal disease, as well as the advantages and limitations of current treatments applied in clinics. The main components of hydrogels for periodontal regeneration are discussed focusing on their different characteristics, outcomes, and strategies for drug delivery. Novel methods for the fabrication of hydrogels are highlighted, and clinical studies regarding the periodontal applications of hydrogels are reviewed. Finally, limitations in current research are discussed, and potential future directions are proposed.
Collapse
Affiliation(s)
- Mafalda S. Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Alexandra B. dos Santos
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Marta S. Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.S.S.); (A.B.d.S.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
Zhu X, von Werdt L, Zappalà G, Sculean A, Eick S, Stähli A. In vitro activity of hyaluronic acid and human serum on periodontal biofilm and periodontal ligament fibroblasts. Clin Oral Investig 2023; 27:5021-5029. [PMID: 37380794 PMCID: PMC10492760 DOI: 10.1007/s00784-023-05121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES A beneficial effect of cross-linked hyaluronic acid (cHA) on periodontal wound healing and regeneration has recently been demonstrated. The present in vitro study was designed to obtain deeper knowledge on the effect of cHA when applied in the gingival sulcus (serum-rich environment) during non-surgical periodontal therapy. MATERIALS AND METHODS The influence of cHA, human serum (HS), and cHA/HS on (i) a 12-species biofilm formation, (ii) the adhesion of periodontal ligament fibroblasts (PDLF) to dentine surface, (iii) the expression and secretion of interleukin-8, and (iv) the expression of receptors of HA in PDLF and gingival fibroblasts (GF) were evaluated. RESULTS At 4 h of biofilm formation, cHA and HS in combination (cHA/HS) slightly decreased the colony-forming unit counts in biofilm whereas the metabolic activity of biofilm was reduced in all test groups (cHA, HS, cHA/HS) vs. control. At 24 h, the quantity of biofilm was reduced in all test groups vs. untreated control. The test substances did not affect adhesion of PDLF to dentin. HS increased the expression of IL-8 by PDLF and GF which was partially downregulated by cHA. HS and/or cHA promoted the expression of the HA receptor RHAMM in GF but not in PDLF. CONCLUSIONS In summary, the present data indicate that serum neither negatively affect the activity of cHA against periodontal biofilm nor had any unwanted influence on the activity of PDLF. CLINICAL RELEVANCE These findings lend additional support for the positive effects of cHA on cells involved in periodontal wound healing, thus pointing to its potential use in non-surgical periodontal therapy.
Collapse
Affiliation(s)
- Xilei Zhu
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Livia von Werdt
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Graziano Zappalà
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Alexandra Stähli
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
7
|
Diehl D, Friedmann A, Liedloff P, Jung RM, Sculean A, Bilhan H. Adjunctive Application of Hyaluronic Acid in Combination with a Sodium Hypochlorite Gel for Non-Surgical Treatment of Residual Pockets Reduces the Need for Periodontal Surgery-Retrospective Analysis of a Clinical Case Series. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6508. [PMID: 36233855 PMCID: PMC9571901 DOI: 10.3390/ma15196508] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
The comprehensive treatment of periodontitis stage 2 to 4 aims at the resolution of periodontal inflammation and “pocket closure”, which implies a residual probing depth of ≤4 mm and a negative BoP. However, supportive periodontal therapy (SPT) regularly leaves behind persistent periodontal pockets with 5 or more mm in residual PPD and sites that often re-colonize and re-infect. Various adjunctive options for subgingival instrumentation have been proposed to enhance the antimicrobial effects to better control the re-infection of these residual sites. The locally applied adjuncts, based on their anti-inflammatory effect, are sodium hypochlorite antiseptic cleaning gel and cross-linked hyaluronic acid (xHyA). Both recently moved into the focus of clinical research on non-surgical and surgical therapy for periodontitis. The surgical use of xHyA indicates regenerative potential, supporting periodontal regeneration. This case series retrospectively analyzes the clinical benefits of the consecutive flapless application of sodium-hypochlorite-based cleaning gel and xHyA at the SPT to achieve pocket closure, thereby reducing the need for periodontal surgery. In 29 patients, 111 sites received the treatment sequence. At 6-month re-evaluation, an overall PPD reduction exceeding 2 mm was achieved, associated with a similar CAL gain (2.02 mm); the bleeding tendency (BoP) was reduced by >60%. Pocket closure occurred in almost 25% of all the sites. Within their limits, the present data suggest that the proposed combined adjunctive treatment of residual active periodontal sites yielded significant improvement in the clinical parameters. Further studies in RCT format are required to confirm these observations.
Collapse
Affiliation(s)
- Daniel Diehl
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
- Institute of Pharmacology and Toxicology, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Anton Friedmann
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Pheline Liedloff
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Rico Marvin Jung
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
| | - Hakan Bilhan
- Department of Periodontology, Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| |
Collapse
|
8
|
Eftimie Totu E, Mănuc D, Totu T, Cristache CM, Buga RM, Erci F, Cristea C, Isildak I. Considerations on the Controlled Delivery of Bioactive Compounds through Hyaluronic Acid Membrane. MEMBRANES 2022; 12:membranes12030303. [PMID: 35323778 PMCID: PMC8949277 DOI: 10.3390/membranes12030303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
(1) Background: The standard treatment for periodontal disease, a chronic inflammatory state caused by the interaction between biofilms generated by organized oral bacteria and the local host defense response, consists of calculus and biofilm removal through mechanical debridement, associated with antimicrobial therapy that could be delivered either systemically or locally. The present study aimed to determine the effectiveness of a hyaluronic acid membrane matrix as a carrier for the controlled release of the active compounds of a formulation proposed as a topical treatment for periodontal disease, and the influence of pH on the complex system’s stability. (2) Methods: The obtained hyaluronic acid (HA) hydrogel membrane with dispersed melatonin (MEL), metronidazole (MZ), and tetracycline (T) was completely characterized through FTIR, XRD, thermal analysis, UV-Vis and fluorescence spectroscopy, fluorescence microscopy, zeta potential and dielectric analysis. The MTT viability test was applied to check the cytotoxicity of the obtained membranes, while the microbiological assessment was performed against strains of Staphylococcus spp. and Streptococcus spp. The spectrophotometric investigations allowed to follow up the release profile from the HA matrix for MEL, MZ, and T present in the topical treatment considered. We studied the behavior of the active compounds against the pH of the generated environment, and the release profile of the bioactive formulation based on the specific comportment towards pH variation. The controlled delivery of the bioactive compounds using HA as a supportive matrix was modeled applying Korsmeyer–Peppas, Higuchi, first-order kinetic models, and a newly proposed pseudo-first-order kinetic model. (3) Results: It was observed that MZ and T were released at higher active concentrations than MEL when the pH was increased from 6.75, specific for patients with periodontitis, to a pH of 7.10, characterizing the healthy patients. Additionally, it was shown that for MZ, there is a burst delivery up to 2.40 × 10−5 mol/L followed by a release decrease, while for MEL and T a short release plateau was recorded up to a concentration of 1.80 × 10−5 mol/L for MEL and 0.90 × 10−5 mol/L for T, followed by a continuous release; (4) Conclusions: The results are encouraging for the usage of the HA membrane matrix as releasing vehicle for the active components of the proposed topical treatment at a physiological pH.
Collapse
Affiliation(s)
- Eugenia Eftimie Totu
- Department of Analytical Chemistry and Environmental Engineering, University Politehnica of Bucharest, 1–7 Polizu St., 011061 Bucharest, Romania
- Correspondence: (E.E.T.); (D.M.)
| | - Daniela Mănuc
- Department of Public Health, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania
- Correspondence: (E.E.T.); (D.M.)
| | - Tiberiu Totu
- School of Life Sciences, Ecole Polytechnique Fédèrale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; (T.T.); (R.-M.B.)
| | - Corina Marilena Cristache
- Department of Dental Techniques, Faculty of Midwifery and Nursing (FMAM), “Carol Davila” University of Medicine and Pharmacy, 8 Eroii Sanitari Blvd, 050474 Bucharest, Romania;
| | - Roxana-Mădălina Buga
- School of Life Sciences, Ecole Polytechnique Fédèrale de Lausanne (EPFL), Route Cantonale, 1015 Lausanne, Switzerland; (T.T.); (R.-M.B.)
| | - Fatih Erci
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Yeni Meram Boulevard Kasim Halife Street, Meram, Konya 42090, Turkey;
| | - Camelia Cristea
- Biotechnologies Center, University of Agriculture and Veterinary Medicine, 42 Blvd. Mărăşti, 011464 Bucharest, Romania;
| | - Ibrahim Isildak
- Department of Bioengineering, Yildiz Campus Barbaros Bulvari, Yildiz Technical University, Istanbul 34343, Turkey;
| |
Collapse
|
9
|
Olszewska-Czyz I, Kralik K, Tota M, Prpic J. The Influence of Hyaluronic Acid Adjunctive Therapy of Periodontitis on Salivary Markers of Oxidative Stress: Randomized, Controlled Clinical Trial. Antioxidants (Basel) 2022; 11:antiox11010135. [PMID: 35052639 PMCID: PMC8773125 DOI: 10.3390/antiox11010135] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 02/04/2023] Open
Abstract
Periodontitis is a common oral disease affecting the tooth-supporting tissues. Bacteria have been long viewed as the main causative factor in its development; however, many investigations have proved that aberrant immune and inflammatory response and the resulting misbalance between the damage caused by reactive oxygen species and the antioxidant capacity of tissues may be an underlying factor in disease progression that reduces healing potential. The objective of the current trial is to assess the outcomes of the addition of hyaluronic acid (HA) to standard non-surgical periodontal therapy (NST) on some major oxidative stress markers in saliva. HA-based gel designed for dental application was used and the measurements were taken after 3 months. HA adjunctive therapy had a significantly greater increase in markers with antioxidant properties as well as total antioxidant capacity compared to standard NST alone. Furthermore, clinically measured levels of gingival inflammation (bleeding on probing-BOP) and periodontal destruction (clinical attachment loss-CAL) were significantly correlated with these markers, and the correlation was negative. This investigation demonstrates that HA may indeed express antioxidant properties and improve the antioxidant capacity of periodontal tissues, thus improving the prognosis for the teeth and the results of periodontal therapy. Further investigations will be necessary to determine the duration of these effects over time.
Collapse
Affiliation(s)
- Iwona Olszewska-Czyz
- Department of Periodontology, Prophylaxis and Oral Pathology, Dental Institute, Medical Faculty, Jagiellonian University, 31155 Krakow, Poland
- Correspondence:
| | - Kristina Kralik
- Department of Medical Statistics and Medical Informatics, Medical Faculty Osijek, University Josip Juraj Strossmayer of Osijek, 31000 Osijek, Croatia;
| | - Marin Tota
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Medical Faculty, University of Rijeka, 51000 Rijeka, Croatia;
| | - Jelena Prpic
- Department of Oral Medicine and Periodontology, Faculty of Dental Medicine, University of Rijeka, 51000 Rijeka, Croatia;
| |
Collapse
|