1
|
Lusardi M, Belvedere R, Petrella A, Iervasi E, Ponassi M, Brullo C, Spallarossa A. Novel tetrasubstituted 5-Arylamino pyrazoles able to interfere with angiogenesis and Ca 2+ mobilization. Eur J Med Chem 2024; 276:116715. [PMID: 39083983 DOI: 10.1016/j.ejmech.2024.116715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
In the last years, 5-pyrazolyl ureas and 5-aminopyrazoles have been investigated for their antiangiogenetic properties and their potential interaction with the ubiquitous Ca2+ binding protein Calreticulin. Based on the structure of the active compounds I and GeGe-3, novel 5-arylamino pyrazoles 2 and 3 were synthesized through a stepwise procedure. In MTT assays, all the new derivatives proved to be non-cytotoxic against eight different tumor cell lines, normal fibroblasts, and endothelial cells. Furthermore, selected derivatives showed relevant antiangiogenetic properties, resulting more effective than reference molecules I and GeGe-3 in inhibiting HUVEC endothelial tube formation. 5-Arylamino pyrazoles 2a and 2d were identified as the most interesting compounds and significantly prevented tube formation of tumor secretome-stimulated HUVEC. Furthermore, the two compounds inhibited HUVEC migration in wound healing assay and altered cell invasion capability. Additionally, 2a and 2d strongly affected Ca2+ mobilization and cytoskeletal organization of HUVEC cells, being as active as the reference compound GeGe-3. Differently from previous studies, molecular docking simulations suggested a poor affinity of 2a towards Calreticulin, one of the interacting partners of the lead compound GeGe-3. Collectively, this new amino-pyrazole library further extends the structure-activity relationships of the previously prepared derivatives and confirmed the biological attractiveness of this chemical scaffold as antiangiogenetic agents.
Collapse
Affiliation(s)
- Matteo Lusardi
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Viale Giovanni Paolo II, 84084, Salerno, Italy
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Viale Giovanni Paolo II, 84084, Salerno, Italy
| | - Erika Iervasi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, Largo. R. Benzi, 10, 16132, Genova, Italy
| | - Marco Ponassi
- IRCCS Ospedale Policlinico San Martino, Proteomics and Mass Spectrometry Unit, Largo. R. Benzi, 10, 16132, Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy
| | - Andrea Spallarossa
- Department of Pharmacy, Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, I-16132, Genova, Italy.
| |
Collapse
|
2
|
Miranda MR, Basilicata MG, Vestuto V, Aquino G, Marino P, Salviati E, Ciaglia T, Domínguez-Rodríguez G, Moltedo O, Campiglia P, Pepe G, Manfra M. Anticancer Therapies Based on Oxidative Damage: Lycium barbarum Inhibits the Proliferation of MCF-7 Cells by Activating Pyroptosis through Endoplasmic Reticulum Stress. Antioxidants (Basel) 2024; 13:708. [PMID: 38929147 PMCID: PMC11200455 DOI: 10.3390/antiox13060708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/01/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Lycium barbarum, commonly recognized as goji berry or wolfberry, is highly appreciated not only for its organoleptic and nutritional properties but also as an important source of bioactive compounds such as polysaccharides, carotenoids, phenolics, and various other non-nutritive compounds. These constituents give it a multitude of health benefits, including antioxidant, anti-inflammatory, and anticancer properties. However, the precise biochemical mechanisms responsible for its anticancer effects remain unclear, and the comprehensive composition of goji berry extracts is often insufficiently explored. This study aimed to investigate the biochemical pathways modulated in breast cancer cells by an ethanolic extract of Lycium barbarum fruit (LBE). Following metabolomic profiling using UHPLC-HRMS/MS, we assessed the antitumoral properties of LBE on different breast cancer cell lines. This investigation revealed that LBE exhibited cytotoxic effects, inducing a pro-oxidant effect that triggered pyroptosis activation through endoplasmic reticulum (ER) stress and subsequent activation of the P-IRE1α/XBP1/NLRP3 axis in MCF-7 cells. In addition, LBE did not display cytotoxicity toward healthy human cells but demonstrated antioxidant properties by neutralizing ROS generated by doxorubicin. These findings underscore the potential of LBE as a highly promising natural extract in cancer therapy.
Collapse
Affiliation(s)
- Maria Rosaria Miranda
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (M.R.M.); (G.A.); (E.S.); (T.C.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy;
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Vincenzo Vestuto
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (M.R.M.); (G.A.); (E.S.); (T.C.); (P.C.)
| | - Giovanna Aquino
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (M.R.M.); (G.A.); (E.S.); (T.C.); (P.C.)
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy;
| | - Pasquale Marino
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (P.M.); (M.M.)
| | - Emanuela Salviati
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (M.R.M.); (G.A.); (E.S.); (T.C.); (P.C.)
| | - Tania Ciaglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (M.R.M.); (G.A.); (E.S.); (T.C.); (P.C.)
| | - Gloria Domínguez-Rodríguez
- Departamento de Química Analítica, Química Física e Ingeniería Química, Facultad de Ciencias, Universidad de Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain;
| | - Ornella Moltedo
- PhD Program in Drug Discovery and Development, University of Salerno, 84084 Fisciano, Italy;
| | - Pietro Campiglia
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (M.R.M.); (G.A.); (E.S.); (T.C.); (P.C.)
| | - Giacomo Pepe
- Department of Pharmacy, University of Salerno, Via G. Paolo II, 84084 Fisciano, Italy; (M.R.M.); (G.A.); (E.S.); (T.C.); (P.C.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Michele Manfra
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy; (P.M.); (M.M.)
| |
Collapse
|
3
|
Williams A, Cooper E, Clark B, Perry L, Ponassi M, Iervasi E, Brullo C, Greenhough A, Ladomery M. Anticancer Effects of the Novel Pyrazolyl-Urea GeGe-3. Int J Mol Sci 2024; 25:5380. [PMID: 38791418 PMCID: PMC11121338 DOI: 10.3390/ijms25105380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/03/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
In a screen of over 200 novel pyrazole compounds, ethyl 1-(2-hydroxypentyl)-5-(3-(3-(trifluoromethyl) phenyl)ureido)-1H-pyrazole-4-carboxylate (named GeGe-3) has emerged as a potential anticancer compound. GeGe-3 displays potent anti-angiogenic properties through the presumptive targeting of the protein kinase DMPK1 and the Ca2+-binding protein calreticulin. We further explored the anticancer potential of GeGe-3 on a range of established cancer cell lines, including PC3 (prostate adenocarcinoma), SKMEL-28 (cutaneous melanoma), SKOV-3 (ovarian adenocarcinoma), Hep-G2 (hepatocellular carcinoma), MDA-MB231, SKBR3, MCF7 (breast adenocarcinoma), A549 (lung carcinoma), and HeLa (cervix epithelioid carcinoma). At concentrations in the range of 10 μM, GeGe-3 significantly restricted cell proliferation and metabolism. GeGe-3 also reduced PC3 cell migration in a standard wound closure and trans-well assay. Together, these results confirm the anticancer potential of GeGe-3 and underline the need for more detailed pre-clinical investigations into its molecular targets and mechanisms of action.
Collapse
Affiliation(s)
- Ashleigh Williams
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Emma Cooper
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Bethany Clark
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Laura Perry
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Marco Ponassi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, L.go. R. Benzi 10, 16132 Genova, Italy
| | - Erika Iervasi
- Proteomics and Mass Spectrometry Unit, IRCCS Ospedale Policlinico San Martino, L.go. R. Benzi 10, 16132 Genova, Italy
| | - Chiara Brullo
- Department of Pharmacy, Medicinal Chemistry Section, University of Genova, Viale Benedetto XV, 3, 16132 Genova, Italy;
| | - Alexander Greenhough
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| | - Michael Ladomery
- Centre for Research in Biosciences, School of Applied Sciences, University of the West of England, Coldharbour Lane, Frenchay, Bristol BS16 1QY, UK
| |
Collapse
|
4
|
Li L, Wang B, Zhao S, Xiong Q, Cheng A. The role of ANXA1 in the tumor microenvironment. Int Immunopharmacol 2024; 131:111854. [PMID: 38479155 DOI: 10.1016/j.intimp.2024.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Annexin A1 (ANXA1) is widely expressed in a variety of body tissues and cells and is also involved in tumor development through multiple pathways. The invasion, metastasis, and immune escape of tumor cells depend on the interaction between tumor cells and their surrounding environment. Research shows that ANXA1 can act on a variety of cells in the tumor microenvironment (TME), and subsequently affect the proliferation, invasion and metastasis of tumors. This article describes the role of ANXA1 in the various components of the tumor microenvironment and its mechanism of action, as well as the existing clinical treatment measures related to ANXA1. These findings provide insight for the further design of strategies targeting ANXA1 for the diagnosis and treatment of malignant tumors.
Collapse
Affiliation(s)
- Lanxin Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Baiqi Wang
- The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuang Zhao
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Qinglin Xiong
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Ailan Cheng
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
5
|
Morretta E, Ruggiero D, Belvedere R, Petrella A, Bruno I, Terracciano S, Monti MC. A multidisciplinary functional proteomics-aided strategy as a tool for the profiling of a novel cytotoxic thiadiazolopyrimidone. Bioorg Chem 2023; 138:106620. [PMID: 37229937 DOI: 10.1016/j.bioorg.2023.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
In recent years, thiadiazolopyrimidine derivatives have been acknowledged for their striking poly-pharmacological framework, thus representing an interesting scaffold for the development of new therapeutic candidates. This paper examines the synthesis and the interactome characterization of a novel bioactive thiadiazolopyrimidone (compound 1), endowed with cytotoxic activity on HeLa cancer cells. In detail, starting from a small set of synthesized thiadiazolopyrimidones, a multi-disciplinary strategy has been carried out on the most bioactive one to disclose its potential biological targets by functional proteomics, using a label-free mass spectrometry based platform coupling Drug Affinity Responsive Target Stability and targeted Limited Proteolysis-Multiple Reaction Monitoring. The identification of Annexin A6 (ANXA6) as compound 1 most reliable cellular partner paved the way to deepen the protein-ligand interaction through bio-orthogonal approaches and to prove compound 1 action on migration and invasion processes governed by ANXA6 modulation. The identification of compund 1 as the first ANXA6 protein modulator represents a relevant tool to further explore the biological role of ANXA6 in cancer, as well as to develop novel anticancer candidates.
Collapse
Affiliation(s)
- Elva Morretta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Dafne Ruggiero
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Raffaella Belvedere
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Antonello Petrella
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Ines Bruno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Stefania Terracciano
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy.
| |
Collapse
|
6
|
Montero-Calle A, López-Janeiro Á, Mendes ML, Perez-Hernandez D, Echevarría I, Ruz-Caracuel I, Heredia-Soto V, Mendiola M, Hardisson D, Argüeso P, Peláez-García A, Guzman-Aranguez A, Barderas R. In-depth quantitative proteomics analysis revealed C1GALT1 depletion in ECC-1 cells mimics an aggressive endometrial cancer phenotype observed in cancer patients with low C1GALT1 expression. Cell Oncol (Dordr) 2023; 46:697-715. [PMID: 36745330 PMCID: PMC10205863 DOI: 10.1007/s13402-023-00778-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Endometrial cancer (EC) is the most common cancer of the female reproductive organs. Despite the good overall prognosis of most low-grade ECs, FIGO I and FIGO II patients might experience tumor recurrence and worse prognosis. The study of alterations related to EC pathogenesis might help to get insights into underlying mechanisms involved in EC development and progression. METHODS Core tumoral samples were used to investigate the role of C1GALT1 in EC by immunohistochemistry (IHC). ECC-1 cells were used as endometrioid EC model to investigate the effect of C1GALT1 depletion using C1GALT1 specific shRNAs. SILAC quantitative proteomics analyses and cell-based assays, PCR, qPCR, WB, dot-blot and IHC analyses were used to identify, quantify and validate dysregulation of proteins. RESULTS Low C1GALT1 protein expression levels associate to a more aggressive phenotype of EC. Out of 5208 proteins identified and quantified by LC-MS/MS, 100 proteins showed dysregulation (log2fold-change ≥ 0.58 or ≤-0.58) in the cell protein extracts and 144 in the secretome of C1GALT1 depleted ECC-1 cells. Nine dysregulated proteins were validated. Bioinformatics analyses pointed out to an increase in pathways associated with an aggressive phenotype. This finding was corroborated by loss-of-function cell-based assays demonstrating higher proliferation, invasion, migration, colony formation and angiogenesis capacity in C1GALT1 depleted cells. These effects were associated to the overexpression of ANXA1, as demonstrated by ANXA1 transient silencing cell-based assays, and thus, correlating C1GALT and ANXA1 protein expression and biological effects. Finally, the negative protein expression correlation found by proteomics between C1GALT1 and LGALS3 was confirmed by IHC. CONCLUSION C1GALT1 stably depleted ECC-1 cells mimic an EC aggressive phenotype observed in patients and might be useful for the identification and validation of EC markers of progression.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | | | - Marta L Mendes
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Daniel Perez-Hernandez
- Department of Infection and Immunity, Luxembourg Institute of Health, 1445, Strassen, Luxembourg
| | - Irene Echevarría
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain
| | | | - Victoria Heredia-Soto
- Translational Oncology, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
| | - Marta Mendiola
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
| | - David Hardisson
- Department of Pathology, Hospital Universitario La Paz, 28046, Madrid, Spain
- Center for Biomedical Research in the Cancer Network (Centro de Investigación Biomédica en Red de Cáncer, CIBERONC), Instituto de Salud Carlos III, 28046, Madrid, Spain
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain
- Faculty of Medicine, Universidad Autónoma de Madrid, 28029, Madrid, Spain
| | - Pablo Argüeso
- Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046, Madrid, Spain.
| | - Ana Guzman-Aranguez
- Biochemistry and Molecular Biology Department, Facultad de Óptica y Optometría, Universidad Complutense de Madrid, 28037, Madrid, Spain.
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
- Functional Proteomics Unit, UFIEC, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain.
| |
Collapse
|
7
|
Brullo C, Caviglia D, Spallarossa A, Alfei S, Franzblau SG, Tasso B, Schito AM. Microbiological Screening of 5-Functionalized Pyrazoles for the Future Development of Optimized Pyrazole-Based Delivery Systems. Pharmaceutics 2022; 14:pharmaceutics14091770. [PMID: 36145518 PMCID: PMC9503297 DOI: 10.3390/pharmaceutics14091770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/16/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The pyrazole ring represents a widely applied chemical scaffold in medicinal chemistry research and we have observed that the physicochemical and biological features of highly substituted pyrazoles can be successfully improved by their encapsulation in dendrimer nanoparticles (NPs). For the future development of new optimized antibacterial delivery systems, we report the synthesis and biological evaluation of 5-amino functionalized pyrazole library (compounds 2–7). In detail, new derivatives 2–7 were differently decorated in C3, C4 and C5 positions. An in silico study predicted pyrazoles 2–7 to exert good drug-like and pharmacokinetic properties. Compounds 3c and 4b were endowed with moderate, but nanotechnologically improvable activity against multidrug-resistant (MDR) clinical isolates of Gram-positive species, especially of the Staphylococcus genus (MICs = 32–64 µg/mL). In addition, derivatives 3c and 4a showed moderate activities against Mycobacterium tuberculosis and 4a evidenced activity also against MDR strains. Overall, the collected evidence supported that, upon nano-formulation with proper polymer matrices, the new synthesized compounds could provide new pyrazole-based drug delivery systems with an enhanced and enlarged-spectrum of antibacterial activity.
Collapse
Affiliation(s)
- Chiara Brullo
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
- Correspondence:
| | - Debora Caviglia
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| | - Andrea Spallarossa
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Silvana Alfei
- Department of Pharmacy (DIFAR), Section of Organic Chemistry, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, 833 South Wood Street, Chicago, IL 60612, USA
| | - Bruno Tasso
- Department of Pharmacy (DIFAR), Section of Medicinal Chemistry, University of Genoa, Viale Benedetto XV 3, 16132 Genoa, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV 6, 16132 Genoa, Italy
| |
Collapse
|
8
|
Spallarossa A, Tasso B, Russo E, Villa C, Brullo C. The Development of FAK Inhibitors: A Five-Year Update. Int J Mol Sci 2022; 23:ijms23126381. [PMID: 35742823 PMCID: PMC9223874 DOI: 10.3390/ijms23126381] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase over-expressed in different solid cancers. In recent years, FAK has been recognized as a new target for the development of antitumor agents, useful to contrast tumor development and metastasis formation. To date, studies on the role of FAK and FAK inhibitors are of great interest for both pharmaceutical companies and academia. This review is focused on compounds able to block FAK with different potencies and with different mechanisms of action, that have appeared in the literature since 2017. Furthermore, new emerging PROTAC molecules have appeared in the literature. This summary could improve knowledge of new FAK inhibitors and provide information for future investigations, in particular, from a medicinal chemistry point of view.
Collapse
|