1
|
Zhang Y, Chen Y, Su Q, Huang X, Li Q, Yang Y, Zhang Z, Chen J, Xiao Z, Xu R, Zu Q, Du S, Zheng W, Ye W, Xiang J. The use of machine and deep learning to model the relationship between discomfort temperature and labor productivity loss among petrochemical workers. BMC Public Health 2024; 24:3269. [PMID: 39587532 PMCID: PMC11587756 DOI: 10.1186/s12889-024-20713-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Workplace may not only increase the risk of heat-related illnesses and injuries but also compromise work efficiency, particularly in a warming climate. This study aimed to utilize machine learning (ML) and deep learning (DL) algorithms to quantify the impact of temperature discomfort on productivity loss among petrochemical workers and to identify key influencing factors. METHODS A cross-sectional face-to-face questionnaire survey was conducted among petrochemical workers between May and September 2023 in Fujian Province, China. Initial feature selection was performed using Lasso regression. The dataset was divided into training (70%), validation (20%), and testing (10%) sets. Six predictive models were evaluated: support vector machine (SVM), random forest (RF), extreme gradient boosting (XGBoost), Gaussian Naive Bayes (GNB), multilayer perceptron (MLP), and logistic regression (LR). The most effective model was further analyzed with SHapley Additive exPlanations (SHAP). RESULTS Among the 2393 workers surveyed, 58.4% (1,747) reported productivity loss when working in high temperatures. Lasso regression identified twenty-seven predictive factors such as educational level and smoking. All six models displayed strong prediction accuracy (SVM = 0.775, RF = 0.760, XGBoost = 0.727, GNB = 0.863, MLP = 0.738, LR = 0.680). GNB model showed the best performance, with a cutoff of 0.869, accuracy of 0.863, precision of 0.897, sensitivity of 0.918, specificity of 0.715, and an F1-score of 0.642, indicating its efficacy as a predictive tool. SHAP analysis showed that occupational health training (SHAP value: -3.56), protective measures (-2.61), and less physically demanding jobs (-1.75) were negatively associated with heat-attributed productivity loss, whereas lack of air conditioning (1.92), noise (2.64), vibration (1.15), and dust (0.95) increased the risk of heat-induced productivity loss. CONCLUSIONS Temperature discomfort significantly undermined labor productivity in the petrochemical sector, and this impact may worsen in a warming climate if adaptation and prevention measures are insufficient. To effectively reduce heat-related productivity loss, there is a need to strengthen occupational health training and implement strict controls for occupational hazards, minimizing the potential combined effects of heat with other exposures.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China
| | - Yifeng Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China
| | - Qingling Su
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Xiaoyin Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Qingyu Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China
| | - Yan Yang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China
| | - Zitong Zhang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China
| | - Jiake Chen
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China
| | - Zhihong Xiao
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China
| | - Rong Xu
- Minnan Branch of the First Affiliated Hospital of Fujian Medical University, Quangang, Quanzhou, 362100, Fujian Province, China
| | - Qing Zu
- Minnan Branch of the First Affiliated Hospital of Fujian Medical University, Quangang, Quanzhou, 362100, Fujian Province, China
| | - Shanshan Du
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China
| | - Wei Zheng
- Minnan Branch of the First Affiliated Hospital of Fujian Medical University, Quangang, Quanzhou, 362100, Fujian Province, China.
| | - Weimin Ye
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, Fujian Province, China.
| | - Jianjun Xiang
- Department of Preventive Medicine, School of Public Health, Fujian Medical University; and Key Laboratory of Environment and Health, Fujian Province University, 1 North Xue-Fu Rd, Minhou, Fuzhou, 350122, Fujian Province, China.
- School of Public Health, The University of Adelaide, North Terrace Campus, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
2
|
Yang Y, Lin M, Zhao H, Peng Y, Huang F, Lu Z. A survey of recent methods for addressing AI fairness and bias in biomedicine. J Biomed Inform 2024; 154:104646. [PMID: 38677633 PMCID: PMC11129918 DOI: 10.1016/j.jbi.2024.104646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/17/2024] [Indexed: 04/29/2024]
Abstract
OBJECTIVES Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods, such as data perturbation and adversarial learning, that have been applied in the biomedical domain to address bias. METHODS We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness. RESULTS The bias of AIs in biomedicine can originate from multiple sources such as insufficient data, sampling bias and the use of health-irrelevant features or race-adjusted algorithms. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic. Distributional methods include data augmentation, data perturbation, data reweighting methods, and federated learning. Algorithmic approaches include unsupervised representation learning, adversarial learning, disentangled representation learning, loss-based methods and causality-based methods.
Collapse
Affiliation(s)
- Yifan Yang
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA; Department of Computer Science, University of Maryland, College Park, USA
| | - Mingquan Lin
- Department of Population Health Sciences, Weill Cornell Medicine, NY, USA
| | - Han Zhao
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Yifan Peng
- Department of Population Health Sciences, Weill Cornell Medicine, NY, USA
| | - Furong Huang
- Department of Computer Science, University of Maryland, College Park, USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
3
|
Yang Y, Lin M, Zhao H, Peng Y, Huang F, Lu Z. A survey of recent methods for addressing AI fairness and bias in biomedicine. ARXIV 2024:arXiv:2402.08250v1. [PMID: 38529077 PMCID: PMC10962742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Objectives Artificial intelligence (AI) systems have the potential to revolutionize clinical practices, including improving diagnostic accuracy and surgical decision-making, while also reducing costs and manpower. However, it is important to recognize that these systems may perpetuate social inequities or demonstrate biases, such as those based on race or gender. Such biases can occur before, during, or after the development of AI models, making it critical to understand and address potential biases to enable the accurate and reliable application of AI models in clinical settings. To mitigate bias concerns during model development, we surveyed recent publications on different debiasing methods in the fields of biomedical natural language processing (NLP) or computer vision (CV). Then we discussed the methods, such as data perturbation and adversarial learning, that have been applied in the biomedical domain to address bias. Methods We performed our literature search on PubMed, ACM digital library, and IEEE Xplore of relevant articles published between January 2018 and December 2023 using multiple combinations of keywords. We then filtered the result of 10,041 articles automatically with loose constraints, and manually inspected the abstracts of the remaining 890 articles to identify the 55 articles included in this review. Additional articles in the references are also included in this review. We discuss each method and compare its strengths and weaknesses. Finally, we review other potential methods from the general domain that could be applied to biomedicine to address bias and improve fairness. Results The bias of AIs in biomedicine can originate from multiple sources such as insufficient data, sampling bias and the use of health-irrelevant features or race-adjusted algorithms. Existing debiasing methods that focus on algorithms can be categorized into distributional or algorithmic. Distributional methods include data augmentation, data perturbation, data reweighting methods, and federated learning. Algorithmic approaches include unsupervised representation learning, adversarial learning, disentangled representation learning, loss-based methods and causality-based methods.
Collapse
Affiliation(s)
- Yifan Yang
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
- Department of Computer Science, University of Maryland, College Park USA
| | - Mingquan Lin
- Department of Population Health Sciences, Weill Cornell Medicine, New York, USA
| | - Han Zhao
- Department of Computer Science, University of Illinois at Urbana-Champaign, Champaign, IL
| | - Yifan Peng
- Department of Population Health Sciences, Weill Cornell Medicine, New York, USA
| | - Furong Huang
- Department of Computer Science, University of Maryland, College Park USA
| | - Zhiyong Lu
- National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH), Bethesda, MD, USA
| |
Collapse
|
4
|
Bokhorst JM, Nagtegaal ID, Fraggetta F, Vatrano S, Mesker W, Vieth M, van der Laak J, Ciompi F. Deep learning for multi-class semantic segmentation enables colorectal cancer detection and classification in digital pathology images. Sci Rep 2023; 13:8398. [PMID: 37225743 PMCID: PMC10209185 DOI: 10.1038/s41598-023-35491-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
In colorectal cancer (CRC), artificial intelligence (AI) can alleviate the laborious task of characterization and reporting on resected biopsies, including polyps, the numbers of which are increasing as a result of CRC population screening programs ongoing in many countries all around the globe. Here, we present an approach to address two major challenges in the automated assessment of CRC histopathology whole-slide images. We present an AI-based method to segment multiple ([Formula: see text]) tissue compartments in the H &E-stained whole-slide image, which provides a different, more perceptible picture of tissue morphology and composition. We test and compare a panel of state-of-the-art loss functions available for segmentation models, and provide indications about their use in histopathology image segmentation, based on the analysis of (a) a multi-centric cohort of CRC cases from five medical centers in the Netherlands and Germany, and (b) two publicly available datasets on segmentation in CRC. We used the best performing AI model as the basis for a computer-aided diagnosis system that classifies colon biopsies into four main categories that are relevant pathologically. We report the performance of this system on an independent cohort of more than 1000 patients. The results show that with a good segmentation network as a base, a tool can be developed which can support pathologists in the risk stratification of colorectal cancer patients, among other possible uses. We have made the segmentation model available for research use on https://grand-challenge.org/algorithms/colon-tissue-segmentation/ .
Collapse
Affiliation(s)
- John-Melle Bokhorst
- Department of pathology, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Iris D Nagtegaal
- Department of pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Filippo Fraggetta
- Pathology Unit Gravina Hospital, Gravina Hospital, Caltagirone, Italy
| | - Simona Vatrano
- Pathology Unit Gravina Hospital, Gravina Hospital, Caltagirone, Italy
| | - Wilma Mesker
- Leids Universitair Medisch Centrum, Leiden, The Netherlands
| | - Michael Vieth
- Klinikum Bayreuth, Friedrich-Alexander-University Erlangen-Nuremberg, Bayreuth, Germany
| | - Jeroen van der Laak
- Department of pathology, Radboud University Medical Center, Nijmegen, The Netherlands
- Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | - Francesco Ciompi
- Department of pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Couture HD. Deep Learning-Based Prediction of Molecular Tumor Biomarkers from H&E: A Practical Review. J Pers Med 2022; 12:2022. [PMID: 36556243 PMCID: PMC9784641 DOI: 10.3390/jpm12122022] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/26/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Molecular and genomic properties are critical in selecting cancer treatments to target individual tumors, particularly for immunotherapy. However, the methods to assess such properties are expensive, time-consuming, and often not routinely performed. Applying machine learning to H&E images can provide a more cost-effective screening method. Dozens of studies over the last few years have demonstrated that a variety of molecular biomarkers can be predicted from H&E alone using the advancements of deep learning: molecular alterations, genomic subtypes, protein biomarkers, and even the presence of viruses. This article reviews the diverse applications across cancer types and the methodology to train and validate these models on whole slide images. From bottom-up to pathologist-driven to hybrid approaches, the leading trends include a variety of weakly supervised deep learning-based approaches, as well as mechanisms for training strongly supervised models in select situations. While results of these algorithms look promising, some challenges still persist, including small training sets, rigorous validation, and model explainability. Biomarker prediction models may yield a screening method to determine when to run molecular tests or an alternative when molecular tests are not possible. They also create new opportunities in quantifying intratumoral heterogeneity and predicting patient outcomes.
Collapse
|
6
|
Cho WC. Digital Pathology: New Initiative in Pathology. Biomolecules 2022; 12:biom12091314. [PMID: 36139153 PMCID: PMC9496471 DOI: 10.3390/biom12091314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| |
Collapse
|
7
|
Wang Y, Hu C, Kwok T, Bain CA, Xue X, Gasser RB, Webb GI, Boussioutas A, Shen X, Daly RJ, Song J. DEMoS: a deep learning-based ensemble approach for predicting the molecular subtypes of gastric adenocarcinomas from histopathological images. Bioinformatics 2022; 38:4206-4213. [PMID: 35801909 DOI: 10.1093/bioinformatics/btac456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
MOTIVATION The molecular subtyping of gastric cancer (adenocarcinoma) into four main subtypes based on integrated multiomics profiles, as proposed by The Cancer Genome Atlas (TCGA) initiative, represents an effective strategy for patient stratification. However, this approach requires the use of multiple technological platforms, and is quite expensive and time-consuming to perform. A computational approach that uses histopathological image data to infer molecular subtypes could be a practical, cost- and time-efficient complementary tool for prognostic and clinical management purposes. RESULTS Here, we propose a deep learning ensemble approach (called DEMoS) capable of predicting the four recognized molecular subtypes of gastric cancer directly from histopathological images. DEMoS achieved tile-level area under the receiver-operating characteristic curve (AUROC) values of 0.785, 0.668, 0.762 and 0.811 for the prediction of these four subtypes of gastric cancer [i.e. (i) Epstein-Barr (EBV)-infected, (ii) microsatellite instability (MSI), (iii) genomically stable (GS) and (iv) chromosomally unstable tumors (CIN)] using an independent test dataset, respectively. At the patient-level, it achieved AUROC values of 0.897, 0.764, 0.890 and 0.898, respectively. Thus, these four subtypes are well-predicted by DEMoS. Benchmarking experiments further suggest that DEMoS is able to achieve an improved classification performance for image-based subtyping and prevent model overfitting. This study highlights the feasibility of using a deep learning ensemble-based method to rapidly and reliably subtype gastric cancer (adenocarcinoma) solely using features from histopathological images. AVAILABILITY AND IMPLEMENTATION All whole slide images used in this study was collected from the TCGA database. This study builds upon our previously published HEAL framework, with related documentation and tutorials available at http://heal.erc.monash.edu.au. The source code and related models are freely accessible at https://github.com/Docurdt/DEMoS.git. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yanan Wang
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Changyuan Hu
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Terry Kwok
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Christopher A Bain
- Faculty of Information Technology, Monash University, Melbourne 3800, Australia
| | - Xiangyang Xue
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Robin B Gasser
- Department of Veterinary Biosciences, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Geoffrey I Webb
- Faculty of Information Technology, Monash Centre for Data Science, Monash University, Melbourne 3800, Australia.,Department of Data Science and Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| | - Alex Boussioutas
- The Alfred Hospital, Melbourne, VIC 3004, Australia.,Central Clinical School, Monash University, Melbourne, VIC 3004, Australia.,Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC 3010, Australia
| | - Xian Shen
- Department of General Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Roger J Daly
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Jiangning Song
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia.,Department of Data Science and Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
8
|
Deep Learning on Histopathological Images for Colorectal Cancer Diagnosis: A Systematic Review. Diagnostics (Basel) 2022; 12:diagnostics12040837. [PMID: 35453885 PMCID: PMC9028395 DOI: 10.3390/diagnostics12040837] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is the second most common cancer in women and the third most common in men, with an increasing incidence. Pathology diagnosis complemented with prognostic and predictive biomarker information is the first step for personalized treatment. The increased diagnostic load in the pathology laboratory, combined with the reported intra- and inter-variability in the assessment of biomarkers, has prompted the quest for reliable machine-based methods to be incorporated into the routine practice. Recently, Artificial Intelligence (AI) has made significant progress in the medical field, showing potential for clinical applications. Herein, we aim to systematically review the current research on AI in CRC image analysis. In histopathology, algorithms based on Deep Learning (DL) have the potential to assist in diagnosis, predict clinically relevant molecular phenotypes and microsatellite instability, identify histological features related to prognosis and correlated to metastasis, and assess the specific components of the tumor microenvironment.
Collapse
|