1
|
Mahmoud NM, Elshazly SM, El-shaarawy F, Zaitone SA, Aldahish AA, Ahmed GA, Fawzy MS, Aloyouni SY, Abed SY, Saeedi T, El-Sayed SS. Nitazoxanide mitigates methotrexate hepatotoxicity in rats: role in inhibiting apoptosis and regulating endoplasmic reticulum stress. Front Pharmacol 2024; 15:1491249. [PMID: 39687303 PMCID: PMC11647085 DOI: 10.3389/fphar.2024.1491249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024] Open
Abstract
Objectives Hepatotoxicity is a severe outcome of methotrexate (MTX) therapy, limiting its clinical use and contributing to its related morbidity and mortality. This study investigated the hepatoprotective effects of nitazoxanide (NTZ), an antiprotozoal drug, against MTX-induced hepatotoxicity and whether endoplasmic reticulum (ER) stress-modulation underlies the expected beneficial effects of NTZ. Methods Thirty-six rats were allocated to six groups, one control group and five MTX groups, where induction of hepatotoxicity was achieved via injecting MTX (20 mg/kg). Groups were assigned as MTX-vehicle, NTZ-100, and NTZ-200 groups (at 100 and 200 mg/kg/day, gavage, respectively), N-acetyl cysteine (NAC) group (500 mg/kg), and 4-phenyl butyric acid (4-PBA) group (150 mg/kg, i.p). Liver function enzymes in serum, hepatic oxidative stress, proinflammatory cytokines, apoptosis, and ER-stress biomarkers were assessed. A histopathological examination was performed. Results Treatment with NTZ lessened the serum liver enzymes, reduced malondialdehyde (lipid peroxidation product), enhanced antioxidant capacity, attenuated proinflammatory cytokines, and suppressed apoptosis. The protective effect of NTZ was dose-dependent, and the findings observed with the high-dose NTZ were similar to those obtained with the ER-stress inhibitor (4-PBA). Conclusion NTZ exerted a hepatoprotective effect in MTX-challenged rats that is mediated via modulation of ER stress and inhibiting apoptosis.
Collapse
Affiliation(s)
| | - Shimaa M. Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Fatma El-shaarawy
- Department of Biochemistry, Faculty of Pharmacy, Sinai University, Arish, Egypt
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Afaf A. Aldahish
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Gehan A. Ahmed
- Forensic Medicine and Clinical Toxicology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manal S. Fawzy
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
- Center for Health Research, Northern Border University, Arar, Saudi Arabia
| | - Sheka Yagub Aloyouni
- Research Department, Natural and Health Sciences Research Center, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Sally Y. Abed
- Department of Respiratory Care, College of Applied Medical Science in Jubail, Imam Abdulrahman Bin Faisal University, Jubail, Saudi Arabia
| | - Tahani Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Shaimaa S. El-Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| |
Collapse
|
2
|
Liu KX, Wang ZY, Ying YT, Wei RM, Dong DL, Sun ZJ. The antiprotozoal drug nitazoxanide improves experimental liver fibrosis in mice. Biochem Pharmacol 2024; 224:116205. [PMID: 38615918 DOI: 10.1016/j.bcp.2024.116205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/18/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Nitazoxanide is an FDA-approved antiprotozoal drug. Our previous studies find that nitazoxanide and its metabolite tizoxanide affect AMPK, STAT3, and Smad2/3 signals which are involved in the pathogenesis of liver fibrosis, therefore, in the present study, we examined the effect of nitazoxanide on experimental liver fibrosis and elucidated the potential mechanisms. The in vivo experiment results showed that oral nitazoxanide (75, 100 mg·kg-1) significantly improved CCl4- and bile duct ligation-induced liver fibrosis in mice. Oral nitazoxanide activated the inhibited AMPK and inhibited the activated STAT3 in liver tissues from liver fibrosis mice. The in vitro experiment results showed that nitazoxanide and its metabolite tizoxanide activated AMPK and inhibited STAT3 signals in LX-2 cells (human hepatic stellate cells). Nitazoxanide and tizoxanide inhibited cell proliferation and collagen I expression and secretion of LX-2 cells. Nitazoxanide and tizoxanide inhibited transforming growth factor-β1 (TGF-β1)- and IL-6-induced increases of cell proliferation, collagen I expression and secretion, inhibited TGF-β1- and IL-6-induced STAT3 and Smad2/3 activation in LX-2 cells. In mouse primary hepatic stellate cells, nitazoxanide and tizoxanide also activated AMPK, inhibited STAT3 and Smad2/3 activation, inhibited cell proliferation, collagen I expression and secretion. In conclusion, nitazoxanide inhibits liver fibrosis and the underlying mechanisms involve AMPK activation, and STAT3 and Smad2/3 inhibition.
Collapse
Affiliation(s)
- Kai-Xin Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Zeng-Yang Wang
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Ya-Ting Ying
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Rui-Miao Wei
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China
| | - De-Li Dong
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| | - Zhi-Jie Sun
- Department of Pharmacology, China Pharmaceutical University, Nanjing, People's Republic of China.
| |
Collapse
|
3
|
Lu W, Yang F, Meng Y, An J, Hu B, Jian S, Yang G, Lu H, Wen C. Immunotoxicity and transcriptome analysis of zebrafish embryos exposure to Nitazoxanide. FISH & SHELLFISH IMMUNOLOGY 2023; 141:108977. [PMID: 37579811 DOI: 10.1016/j.fsi.2023.108977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/16/2023]
Abstract
Nitazoxanide (NTZ) is a broad-spectrum immunomodulatory drug, and little information is about the immunotoxicity of aquatic organisms induced by NTZ. In the present study, reduced body length and decreased yolk sac absorption in the NTZ-treated group were observed. Meanwhile, the number of innate immune cells and adaptive immune cells was substantially reduced upon NTZ exposure, and the migration and retention of macrophages and neutrophils in the injured area were inhibited. Following NTZ stimulation, oxidative stress levels in the zebrafish increased obviously. Mechanistically, RNA-seq, a high-throughput method, was performed to analyze the global expression of differentially expressed genes (DEGs) in zebrafish embryos treated with NTZ. 531 DEGs were identified by comparative transcriptome analysis, including 121 up-regulated and 420 down-regulated genes in zebrafish embryos after NTZ exposure. The transcriptome sequences were further subjected to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) and analysis, showing phototransduction and metabolic pathway, respectively, and were most enriched. In addition, some immune-related genes were inhibited after NTZ exposure. RNA-seq results confirmed by qRT-PCR were used to verify the expression of the 6 selected genes. The other immune-related genes such as two pro-inflammatory cytokines (IL-1β, tnfα) and two chemokines (CXCL8b.3, CXCL-c1c) were further confirmed and were differentially regulated after NTZ exposure. In summary, NTZ exposure could lead to immunotoxicity and increased ROS in zebrafish embryos, this study provides valuable information for future elucidating the molecular mechanism of exogenous stimuli-induced immunotoxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Wuting Lu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Fanhua Yang
- College of Food Science and Technology, Nanchang University, Nanchang, 330031, China
| | - Yunlong Meng
- Department of Medical Genetics, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Jinhua An
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Baoqing Hu
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Shaoqing Jian
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Gang Yang
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China
| | - Huiqiang Lu
- Ganzhou Key Laboratory for Drug Screening and Discovery, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, Affiliated Hospital of Jinggangshan University, Ji'an, 343009, China.
| | - Chungen Wen
- Department of Aquatic Science, College of Life Science, Nanchang University, Xuefu Avenue, Nanchang, Jiangxi Province, 330031, China.
| |
Collapse
|
4
|
Andrade DL, Jalalizadeh M, Salustiano ACC, Reis LO. Bladder cancer immunomodulatory effects of intravesical Nitazoxanide, Rapamycin, Thalidomide and Bacillus Calmette-Guérin (BCG). World J Urol 2023; 41:2375-2380. [PMID: 37470811 DOI: 10.1007/s00345-023-04526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
PURPOSE To understand the effect of Nitazoxanide (NTZ), Rapamycin, Thalidomide, alone and in combination with BCG on bladder cancer (BC) histopathology and programmed death-ligand 1 (PD-L1) and anti-cytotoxic T lymphocyte antigen 4 (CTLA4) expression. METHODS Female Fisher-344 rats underwent intravesical N-methyl-N-nitrosourea (MNU) followed by weekly intravesical treatment with saline (controls, n = 10), BCG (n = 10), NTZ (n = 8), BCG plus NTZ (n = 8), Rapamycin (n = 10) BCG plus Rapamycin (n = 10), Thalidomide (n = 10), and BCG plus Thalidomide (n = 10), and euthanized after 8 weeks and their bladders were investigated for BC and PD-L1 and CTLA4 expression. RESULTS Rapamicyn alone and in combination with BCG had the lowest number of bladder neoplasias in the histopathology exam (1/10). Neoplastic lesions were found in 4/10 BCG recipients, 5/10 Thalidomide recipients, 4/10 Thalidomide plus BCG recipients, 5/8 NTZ and 3/8 NTZ plus BCG recipients. Adding NTZ to BCG increased the expression of PD-L1 and adding Rapamycin or Thalidomide decreased PD-L1 and CTLA4 expression compared to BCG alone. Rapamycin alone significantly increased CTLA4 and slightly increased PD-L1 expression but its combination with BCG significantly decreased both markers. Thalidomide had a similar effect; however, it was only slightly different from the control and BCG alone groups. CONCLUSION Intravesical BCG combination treatment seems to effectively prevent BC development in an immunecompetent clinically relevant animal model, introducing Thalidomide, Nitazoxanide, and specially Rapamycin as candidates in the intravesical immunotherapy advancement. Our study contributes in understanding the mechanism of cancer immunotherapy.
Collapse
Affiliation(s)
- Danilo L Andrade
- UroScience and Department of Urology, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Mehrsa Jalalizadeh
- UroScience and Department of Urology, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Ana Clara C Salustiano
- UroScience and Department of Urology, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil
| | - Leonardo O Reis
- UroScience and Department of Urology, Faculty of Medical Sciences, State University of Campinas-UNICAMP, Campinas, São Paulo, Brazil.
- Urologic Oncology Department, School of Life Sciences, Pontifical Catholic University of Campinas, PUC-Campinas, Av. John Boyd Dunlop-Jardim Ipaussurama, Campinas, São Paulo, 13034-685, Brazil.
| |
Collapse
|
5
|
Chaffey L, Roberti A, Greaves DR. Drug repurposing in cardiovascular inflammation: Successes, failures, and future opportunities. Front Pharmacol 2022; 13:1046406. [PMID: 36339576 PMCID: PMC9634418 DOI: 10.3389/fphar.2022.1046406] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 12/15/2022] Open
Abstract
Drug repurposing is an attractive, pragmatic approach to drug discovery that has yielded success across medical fields over the years. The use of existing medicines for novel indications enables dramatically reduced development costs and timescales compared with de novo drug discovery and is therefore a promising strategy in cardiovascular disease, where new drug approvals lag significantly behind that of other fields. Extensive evidence from pre-clinical and clinical studies show that chronic inflammation is a driver of pathology in cardiovascular disease, and many efforts have been made to target cardiovascular inflammation therapeutically. This approach has been met with significant challenges however, namely off-target effects associated with broad-spectrum immunosuppression, particularly in long-term conditions such as cardiovascular disease. Nevertheless, multiple anti-inflammatory medicines have been assessed for efficacy in cardiovascular clinical trials, with most of these being repurposed from their original indications in autoimmune conditions like rheumatoid arthritis. In this review, we discuss the mixed successes of clinical trials investigating anti-inflammatory drugs in cardiovascular disease, with examples such as anti-cytokine monoclonal antibodies, colchicine, and methotrexate. Looking to the future, we highlight potential new directions for drug repurposing in cardiovascular inflammation, including the emerging concepts of drug re-engineering and chrono-pharmacology.
Collapse
Affiliation(s)
| | | | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
6
|
Gonzalo X, Bielecka MK, Tezera L, Elkington P, Drobniewski F. Anti-Tuberculosis Activity of Three Carbapenems, Clofazimine and Nitazoxanide Using a Novel Ex Vivo Phenotypic Drug Susceptibility Model of Human Tuberculosis. Antibiotics (Basel) 2022; 11:antibiotics11101274. [PMID: 36289932 PMCID: PMC9598577 DOI: 10.3390/antibiotics11101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022] Open
Abstract
We evaluated a novel physiological 3-D bioelectrospray model of the tuberculosis (TB) granuloma to test the activity of a known anti-TB drug, clofazimine; three carbapenems with potential activity, including one currently used in therapy; and nitazoxanide, an anti-parasitic compound with possible TB activity (all chosen as conventional drug susceptibility was problematical). PBMCs collected from healthy donors were isolated and infected with M. tuberculosis H37Rv lux (i.e., luciferase). Microspheres were generated with the infected cells; the anti-microbial compounds were added and bacterial luminescence was monitored for at least 21 days. Clavulanate was added to each carbapenem to inhibit beta-lactamases. M. tuberculosis (MTB) killing efficacy was dose dependent. Clofazimine was the most effective drug inhibiting MTB growth at 2 mg/L with good killing activity at both concentrations tested. It was the only drug that killed bacteria at the lowest concentration tested. Carbapenems showed modest initial activity that was lost at around day 10 of incubation and clavulanate did not increase killing activity. Of the carbapenems tested, tebipenem was the most efficient in killing MTB, albeit at a high concentration. Nitazoxanide was effective only at concentrations not achievable with current dosing (although this might partly have been an artefact related to extensive protein binding).
Collapse
Affiliation(s)
- Ximena Gonzalo
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, London W12 0NN, UK
| | - Magdalena K. Bielecka
- NIHR Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Liku Tezera
- NIHR Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Paul Elkington
- NIHR Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Francis Drobniewski
- Department of Infectious Diseases, Faculty of Medicine, Imperial College, London W12 0NN, UK
- Correspondence:
| |
Collapse
|
7
|
Momeni M, Mashayekhi K, Navashenaq JG, Sankian M. Identification of G-quadruplex anti-Interleukin-2 aptamer with high specificity through SELEX stringency. Heliyon 2022; 8:e09721. [PMID: 35756119 PMCID: PMC9218155 DOI: 10.1016/j.heliyon.2022.e09721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
Abstract
Aptamers are short single-stranded oligonucleotides capable of binding to various targets with high specificity and affinity. This study aimed to identify an aptamer against mouse interleukin-2 (mIL-2) as one of the most important cytokines in autoimmune diseases for diagnostic and therapeutic purposes. For this purpose, 14 SELEX rounds were performed on recombinant mIL-2 with high stringency. The dot blot and flow cytometry techniques were conducted to determine affinity, dissociation constant (Kd), specificity, and SELEX rounds screening. The stringency of rounds was considered based on aptamer/target incubation time, washing steps, and target proteins. Finally, the aptamer's structure was mapped and predicted by M-fold and QGRS Mapper web-based software. After 14 rounds, the flow cytometry analysis revealed that the 11th round was a proper round. The high-affinity aptamers M20 and M15 were chosen for their ability to bind mIL-2. According to DNA folding software, M20 and M15 aptamers had G-quadruplex and stem-loop structures, respectively. The M20 aptamer affinity was greater than M15, and its predicted Kd was 91 nM. A simple SELEX protocol with round stringency was explained to identify DNA aptamers against protein targets. The reported G-quadruplex aptamer might have potential diagnostic or therapeutic application in IL-2–related disorders.
Collapse
Affiliation(s)
- Mohsen Momeni
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kazem Mashayekhi
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Mojtaba Sankian
- Immuno-Biochemistry Lab, Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|