1
|
Gandhi MY, Prasad SB, Kumar V, Soni H, Rawat H, Mishra SK, Grewal J, Singh S, Charde V, Gupta A, Jha SK, Singh G, Tandon S, Mrkute A, Ramamurthy PC, Narasimhaji CV, Singh A, Singh R, Srikanth N, Acharya R, Webster TJ. Quantification of Phytochemicals and Metal Ions as well as the Determination of Volatile Compounds, Antioxidant, Antimicrobial and Antacid Activities of the Mimosa pudica L. Leaf: Exploration of Neglected and Under-Utilized Part. Chem Biodivers 2023; 20:e202301049. [PMID: 37728228 DOI: 10.1002/cbdv.202301049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 09/21/2023]
Abstract
Mimosa pudica L. (MP) is well-known plant in traditional medicinal system, especially in India. Unfortunately, leaves of MP are less explored. To determine the food and nutritional value of the neglected part of Mimosa pudica L. (MP), that is MP leaves, phytochemicals and metal ions of MP were quantified by newly developed HPLC and ICPOES-based methods. The content of phytochemicals observed using HPLC analysis for chlorogenic acid, catechin, and epicatechin was 141.823 (±8.171), 666.621 (±11.432), and 293.175 (±12.743) μg/g, respectively. Using GC/MS/MS analysis, fatty acid like oleic acid were identified. In ICP-OES analysis, a significant content of Na, K, Ca, Cu, Fe, Mg, Mn, and Zn was observed. The observed TPC and TFC for MP leaf extracts was 44.327 (±1.041) mg GAE/ g of wt. and 214.217 (±4.372) mg QCE/ g of wt., respectively. The DPPH assay depicted a strong antioxidant activity of MP leaf extracts with IC50 values of 0.796 (±0.081) mg/mL and a TEAC value of 0.0356 (±0.0003). A significant antacid activity (666 mg MP+400 mg CaCO3 >400 mg CaCO3 ≫666 mg Gelusil) of MP leaves was noticed. The methanolic extract of MP leaves demonstrated anti-microbial activity against Staphylococcus aureus (15±2mm), Pseudomonas aeruginosa (12±2mm) and Escherichia coli (10±2mm). In silico studies confirmed the in vitro results obtained for antioxidant, antiacid, and anti-microbial activities. In addition, in silico studies revealed the anti-cancerous and anti-inflammatory potential of the MP leaves. In summary, this study demonstrated the medicinal significance of MP leaves and the conversion of agro-waste or the under-utilized part of MP into pharmaceutical potent materials. Consequently, the present study highlighted that MP leaves alone have medicinal importance with good nutritional utility and possess large promise in the pharma industry along with improving bio-valorization and the environment.
Collapse
Affiliation(s)
- Ms Yashika Gandhi
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Shyam Baboo Prasad
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Vijay Kumar
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Soni
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Hemant Rawat
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Sujeet K Mishra
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Jyotika Grewal
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | | | - Vaibhav Charde
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Akhil Gupta
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | | | - Gagandeep Singh
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Smriti Tandon
- Central Ayurveda Research Institute, Jhansi, Uttar Pradesh, 284003, India
| | - Akshada Mrkute
- Indira College Of Pharmacy Nanded, Maharashtra, 431606, India
| | | | | | - Arjun Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Ravindra Singh
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Narayan Srikanth
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Rabinarayan Acharya
- Central Council for Research in Ayurvedic Sciences, New Delhi, 110058, India
| | - Thomas J Webster
- School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| |
Collapse
|
2
|
Nkwingwa BK, Wado EK, Foyet HS, Bouvourne P, Jugha VT, Mambou AHMY, Bila RB, Taiwe GS. Ameliorative effects of Albizia adianthifolia aqueous extract against pentylenetetrazole-induced epilepsy and associated memory loss in mice: Role of GABAergic, antioxidant defense and anti-inflammatory systems. Biomed Pharmacother 2023; 165:115093. [PMID: 37392651 DOI: 10.1016/j.biopha.2023.115093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/03/2023] Open
Abstract
Albizia adianthifolia (Schumach.) (Fabaceae) is a medicinal herb used for the treatment of epilepsy and memory impairment. This study aims to investigate the anticonvulsant effects of Albizia adianthifolia aqueous extract against pentylenetetrazole (PTZ)-induced spontaneous convulsions in mice; and determine whether the extract could mitigate memory impairment, oxidative/nitrergic stress, GABA depletion and neuroinflammation. Ultra-high performance liquid chromatography/mass spectrometry analysis was done to identify active compounds from the extract. Mice were injected with PTZ once every 48 h until kindling was developed. Animals received distilled water for the normal group and negative control groups, doses of extract (40, 80, or 160 mg/kg) for the test groups and sodium valproate (300 mg/kg) for the positive control group. Memory was measured using Y maze, novel object recognition (NOR) and open field paradigms, while the oxidative/nitrosative stresses (MDA, GSH, CAT, SOD and NO), GABAergic transmission (GABA, GABA-T and GAD) and neuro-inflammation (TNF-α, IFN-γ, IL- 1β, and IL-6) were determined. Brain photomicrograph was also studied. Apigenin, murrayanine and safranal were identified in the extract. The extract (80-160 mg/kg) significantly protected mice against seizures and mortality induced by PTZ. The extract significantly increased the spontaneous alternation and the discrimination index in the Y maze and NOR tests, respectively. PTZ kindling induced oxidative/nitrosative stress, GABA depletion, neuroinflammation and neuronal cells death was strongly reversed by the extract. The results suggest that the anticonvulsant activity of Albizia adianthifolia extract is accompanied by its anti-amnesic property, and may be supported by the amelioration of oxidative stress, GABAergic transmission and neuroinflammation.
Collapse
Affiliation(s)
- Balbine Kamleu Nkwingwa
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Eglantine Keugong Wado
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Harquin Simplice Foyet
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Parfait Bouvourne
- Department of Biological Sciences, Faculty of Science, University of Maroua, P.O. Box 814, Maroua, Cameroon
| | - Vanessa Tita Jugha
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Alain Hart Mann Youbi Mambou
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Raymond Bess Bila
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Germain Sotoing Taiwe
- Department of Animal Biology and Conservation, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.
| |
Collapse
|
3
|
Kato-Noguchi H. Invasive Mechanisms of One of the World's Worst Alien Plant Species Mimosa pigra and Its Management. PLANTS (BASEL, SWITZERLAND) 2023; 12:1960. [PMID: 37653876 PMCID: PMC10221770 DOI: 10.3390/plants12101960] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/07/2023] [Accepted: 05/09/2023] [Indexed: 09/02/2023]
Abstract
Mimosa pigra is native to Tropical America, and it has naturalized in many other countries especially in Australia, Eastern and Southern Africa and South Asia. The species is listed in the top 100 of the world's worst invasive alien species and is listed as Least Concern in the IUCN Red List of Threatened Species. M. pigra forms very large monospecific stands in a wet-dry tropical climate with conditions such as floodplains, riverbanks, grasslands, forests and agricultural fields. The stands expand quickly and threaten the native flora and fauna in the invasive ranges. Possible mechanisms of the invasion of the species have been investigated and accumulated in the literature. The characteristics of the life history such as the high reproduction and high growth rate, vigorous mutualism with rhizobia and arbuscular mycorrhizal fungi, very few natural enemies, and allelopathy, and certain secondary metabolites may contribute to the invasiveness and naturalization of M. pigra. Herbicide application, such as aerial spraying, foliar, cut-stump and soil treatments, is the primary control methods of M. pigra. The investigation of the natural enemies of M. pigra has been conducted in its native ranges since 1979, and biological control agents have been selected based on host specificity, rearing and availability. Mechanical control practices, such as hand weeding, bulldozing, chaining and fire, were also effective. However, the species often regrow from the remaining plant parts. Integration of multiple weed control practices may be more effective than any single practice. This is the first review article focusing on the invasive mechanism of M. pigra.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki 761-0795, Japan
| |
Collapse
|
4
|
Lin Q, Qin Y, Sun H, Wang X, Yang M, Zhang X, Zhou L, Luo F. SPE-UPLC-MS/MS for Determination of 36 Monomers of Alkylphenol Ethoxylates in Tea. Molecules 2023; 28:molecules28073216. [PMID: 37049980 PMCID: PMC10096240 DOI: 10.3390/molecules28073216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/14/2023] Open
Abstract
Alkylphenol ethoxylates (APEOs) represent a non-ionic surfactant widely used as adjuvants in pesticide formulation, which is considered to cause an endocrine-disrupting effect. In the current study, we established a detection method for the APEOs residue in tea based on solid-phase extraction (SPE) for the simultaneous analysis of nonylphenol ethoxylates (NPEOs) and octylphenol ethoxylates (OPEOs) by UPLC-MS/MS. In the spiked concentrations from 0.024 to 125.38 μg/kg for 36 monomers of APEOs (nEO = 3-20), the recoveries of APEOs range from 70.3-110.7% with RSD ≤ 16.9%, except for OPEO20 (61.8%) and NPEO20 (62.9%). The LOQs of OPEOs and NPEOs are 0.024-6.27 and 0.16-5.01 μg/kg, respectively. OPEOs and NPEOs are detected in 50 marketed tea samples with a total concentration of 0.057-12.94 and 0.30-215.89 µg/kg, respectively. The detection rate and the range of the monomers of NPEOs are generally higher than those of OPEOs. The current study provides a theoretical basis for the rational use of APEOs as adjuvants in commercial pesticide production.
Collapse
Affiliation(s)
- Qin Lin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Yujie Qin
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Hezhi Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinru Wang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Mei Yang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Zhou
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fengjian Luo
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| |
Collapse
|
5
|
Kenmogne CF, Eckhardt P, Tchuenguem RT, Groß J, Ngouafong FT, Ponou BK, Dzoyem JP, Teponno RB, Opatz T, Tapondjou LA. Diplomeroterpenoid G: An unusual meroterpenoid from Mimosa pudica Linn. (Mimosaceae). Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
6
|
Mandal AK, Pandey A, Sah RK, Baral A, Sah P. In Vitro Antioxidant and Antimicrobial Potency of Mimosa pudica of Nepalese Terai Region: Insight into L-Mimosine as an Antibacterial Agent. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:6790314. [PMID: 36248409 PMCID: PMC9568293 DOI: 10.1155/2022/6790314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022]
Abstract
Aim The study aimed to evaluate the in vitro antioxidant and antimicrobial potency of Mimosa pudica found wildly in the Terai region of Nepal and assess its physicochemical properties, such as total phenolic content (TPC) and total flavonoid content (TFC). Materials and Methods The physicochemical properties of ethyl acetate extract of Mimosa pudica (EAMP), such as extractive value, total ash content, loss on drying, and phytochemical screening, were calculated using standard protocols. The TPC was determined by using the Folin-Ciocalteu method taking gallic acid as standard, and TFC was conducted by using the AlCl3 colorimetric method, using a 96-well plate reader. The in vitro antibacterial activity of different concentrations of the extract against four bacterial ATCC strains was determined by the agar well diffusion method in the Mueller Hinton agar (MHA) medium. The in silico molecular docking model was used to ascertain the antibacterial potency of L-mimosine against the selected strains of bacteria used for the in vitro study by calculating the binding affinity towards the protein of bacteria. Results The preliminary screening of the extract showed the presence of several phytochemicals. The total ash content (7.67%), loss on drying (2.30%), and extractive value (8.966%) were determined by analyzing the crude sample. The total phenolic and flavonoid contents were 418.640 ± 0.018 mg GAE/g (dried extract) and 14.126 ± 0.021 mg QE/g (dried extract), respectively. The extract showed a potent free radical scavenging activity with an IC50 value of 158.95 ± 1.12 µg/mL. The plant extract also demonstrated the antibacterial activity against both Gram-positive bacteria Staphylococcus aureus (15 mm) and Bacillus cereus (22 mm) and Gram-negative bacteria Escherichia coli (17 mm) and Klebsiella pneumoniae (16 mm) at 200 mg/mL concentration of extract. There was a noteworthy binding affinity of antibiotics with almost all selected bacterial proteins with binding energy against Escherichia coli DNA gyrase subunit B (-5.7 kcal/mol), Staphylococcus aureus DNA gyrase subunit B (-6.1 kcal/mol), Bacillus cereus metallothiol transferase (-5.2 kcal/mol), and Klebsiella pneumoniaebeta-lactamase (-6.1 kcal/mole), respectively, with the L-mimosine. Conclusion The findings of the current study suggest that Mimosa pudica from the Terai region of Nepal is rich in phenolic and flavonoid compounds, has a significant impact on bacterial growth inhibition, and has a notable potential to scavenge free radicals (DPPH). According to the in silico analysis, L-mimosine is a potent antibacterial compound that might be utilised to discover novel antibacterial drugs to combat antibiotic resistance.
Collapse
Affiliation(s)
| | - Anisha Pandey
- Natural Product Research Laboratory, Thapathali, Kathmandu 44600, Nepal
- Department of Biotechnology, National College, Tribhuvan University, Naya Bazar, Kathmandu 44600, Nepal
| | - Ranjit Kumar Sah
- Department of Pharmacy, Janamaitri Foundation Institute of Health Sciences, GPO Box No. 8322, Lalitpur, Nepal
| | - Adesh Baral
- Department of Infection and Immunology, Kathmandu Research Institute for Biological Sciences, Biomedicum Research Campus Building, Saptakhel, Lalitpur 44700, Nepal
| | - Phoolgen Sah
- Department of Pharmacy, Janamaitri Foundation Institute of Health Sciences, GPO Box No. 8322, Lalitpur, Nepal
| |
Collapse
|
7
|
Flavonoids from green propolis of the Northeastern Brazilian Caatinga Mimosa tenuiflora (Willd.) Poir.: A chemotaxonomic aspect. BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
8
|
Polyphenolic Composition, Antioxidant, Antiproliferative and Antidiabetic Activities of Coronopus didymus Leaf Extracts. Molecules 2022; 27:molecules27196263. [PMID: 36234800 PMCID: PMC9570767 DOI: 10.3390/molecules27196263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2022] [Accepted: 09/20/2022] [Indexed: 12/03/2022] Open
Abstract
Coronopus didymus (Brassicaceae) commonly known as lesser swine cress has been reported to be used for its pharmacological activities. This study aimed to evaluate the medicinal potential of C. didymus extracts against cancer, diabetes, infectious bacteria and oxidative stress and the identification of bioactive compounds present in these extracts. The effects of using different solvents for the extraction of C. didymus on the contents of major polyphenols and biological activities were investigated. Plant sample was shade dried, ground to a fine powder, and then soaked in pure acetone, ethanol and methanol. The highest contents of major polyphenols were found in methanol-based extract, i.e., chlorogenic acid, HB acid, kaempferol, ferulic acid, quercetin and benzoic acid with 305.02, 12.42, 11.5, 23.33, 975.7 and 428 mg/g of dry weight, respectively, followed by ethanol- and acetone-based extracts. The methanol-based extract also resulted in the highest antioxidant activities (56.76%), whereas the highest antiproliferative (76.36) and alpha glucosidase inhabitation (96.65) were demonstrated in ethanol-based extracts. No antibacterial property of C. didymus was observed against all the tested strains of bacteria. Further studies should be focused on the identification of specific bioactive compounds responsible for pharmacological activities.
Collapse
|
9
|
Aphrodisiac Performance of Bioactive Compounds from Mimosa pudica Linn.: In Silico Molecular Docking and Dynamics Simulation Approach. Molecules 2022; 27:molecules27123799. [PMID: 35744923 PMCID: PMC9229059 DOI: 10.3390/molecules27123799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Plants and their derived molecules have been traditionally used to manage numerous pathological complications, including male erectile dysfunction (ED). Mimosa pudica Linn. commonly referred to as the touch-me-not plant, and its extract are important sources of new lead molecules in drug discovery research. The main goal of this study was to predict highly effective molecules from M. pudica Linn. for reaching and maintaining penile erection before and during sexual intercourse through in silico molecular docking and dynamics simulation tools. A total of 28 bioactive molecules were identified from this target plant through public repositories, and their chemical structures were drawn using Chemsketch software. Graph theoretical network principles were applied to identify the ideal target (phosphodiesterase type 5) and rebuild the network to visualize the responsible signaling genes, proteins, and enzymes. The 28 identified bioactive molecules were docked against the phosphodiesterase type 5 (PDE5) enzyme and compared with the standard PDE5 inhibitor (sildenafil). Pharmacokinetics (ADME), toxicity, and several physicochemical properties of bioactive molecules were assessed to confirm their drug-likeness property. Molecular dynamics (MD) simulation modeling was performed to investigate the stability of PDE5–ligand complexes. Four bioactive molecules (Bufadienolide (−12.30 kcal mol−1), Stigmasterol (−11.40 kcal mol−1), Isovitexin (−11.20 kcal mol−1), and Apigetrin (−11.20 kcal mol−1)) showed the top binding affinities with the PDE5 enzyme, much more powerful than the standard PDE5 inhibitor (−9.80 kcal mol−1). The four top binding bioactive molecules were further validated for a stable binding affinity with the PDE5 enzyme and conformation during the MD simulation period as compared to the apoprotein and standard PDE5 inhibitor complexes. Further, the four top binding bioactive molecules demonstrated significant drug-likeness characteristics with lower toxicity profiles. According to the findings, the four top binding molecules may be used as potent and safe PDE5 inhibitors and could potentially be used in the treatment of ED.
Collapse
|
10
|
Fofana S, Delporte C, Calvo Esposito R, Ouédraogo M, Van Antwerpen P, Guissou IP, Semdé R, Mathieu V. In Vitro Antioxidant and Anticancer Properties of Various E. senegalensis Extracts. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082583. [PMID: 35458781 PMCID: PMC9025838 DOI: 10.3390/molecules27082583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 12/18/2022]
Abstract
Although Erythrina senegalensis is a plant widely used in traditional medicine in sub-Saharan Africa, its biological properties have been poorly investigated to date. We first characterized by conventional reactions the composition of several stem bark extracts and evaluated in acellular and cellular assays their pro- or antioxidant properties supported by their high phenolic and flavonoid content, particularly with the methanolic extract. The pro- or antioxidant effects observed did not correlate with their IC50 concentrations against five cancer cell lines determined by MTT assay. Indeed, the CH2Cl2 extract and its ethyl acetate (EtOAc) subfraction appeared more potent although they harbored lower pro- or antioxidant effects. Nevertheless, at equipotent concentration, both extracts induced ER- and mitochondria-derived vacuoles observed by fluorescent microscopy that further led to non-apoptotic cell death. LC coupled to high resolution MS investigations have been performed to identify chemical compounds of the extracts. These investigations highlighted the presence of compounds formerly isolated from E. senegalensis including senegalensein that could be retrieved only in the EtOAc subfraction but also thirteen other compounds, such as 16:3-Glc-stigmasterol and hexadecanoic acid, whose anticancer properties have been previously reported. Nineteen other compounds remain to be identified. In conclusion, E. senegalensis appeared rich in compounds with antioxidant and anticancer properties, supporting its use in traditional practice and its status as a species of interest for further investigations in anticancer drug research.
Collapse
Affiliation(s)
- Souleymane Fofana
- Laboratory of Drug Sciences, Higher Institute of Health Sciences (INSSA), Nazi BONI University, Bobo-Dioulasso 01 P.O. Box 1091, Burkina Faso;
| | - Cédric Delporte
- RD3—Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Rafaèle Calvo Esposito
- Protein Chemistry Unit, Department of General Chemistry I, Faculty of Medicine, Université Libre de Bruxelles, Campus Erasme (CP 609), Route de Lennik, 1070 Brussels, Belgium;
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
| | - Moussa Ouédraogo
- Laboratory of Drug Development (LADME), Center of Training, Research and Expertises of Pharmaceutical Sciences (CEA-CFOREM), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou 03 P.O. Box 7021, Burkina Faso; (M.O.); (R.S.)
| | - Pierre Van Antwerpen
- RD3—Pharmacognosy, Bioanalysis and Drug Discovery Unit and Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium; (C.D.); (P.V.A.)
| | - Innocent Pierre Guissou
- Faculty of Health Sciences, Saint Thomas d’Aquin University, Ouagadougou 06 P.O. Box 10212, Burkina Faso;
| | - Rasmané Semdé
- Laboratory of Drug Development (LADME), Center of Training, Research and Expertises of Pharmaceutical Sciences (CEA-CFOREM), Training and Research Unit, Health Sciences, Joseph KI-ZERBO University, Ouagadougou 03 P.O. Box 7021, Burkina Faso; (M.O.); (R.S.)
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceuticals, Faculty of Pharmacy, Université Libre de Bruxelles (ULB), 1050 Brussels, Belgium
- ULB Cancer Research Center, Université libre de Bruxelles (ULB), 1050 Brussels, Belgium
- Correspondence: ; Tel.: +32-478-31-73-88
| |
Collapse
|