1
|
Mitra A, Mandal S, Bose B, Shenoy P S. Unlocking the Potential of Obestatin: A Novel Peptide Intervention for Skeletal Muscle Regeneration and Prevention of Atrophy. Mol Biotechnol 2024; 66:948-959. [PMID: 38198052 DOI: 10.1007/s12033-023-01011-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 11/27/2023] [Indexed: 01/11/2024]
Abstract
Obestatin is derived from the same gene as that of ghrelin and their functions were perceived to be antagonistic. Recent developments have shown that although they are known to have contradictory functions, effect of obestatin on skeletal muscle regeneration is similar to that of ghrelin. Obestatin works through a receptor called GPR39, a ghrelin and motilin family receptor and transduces signals in skeletal muscle similar to that of ghrelin. Not only there is a similarity in the receptor family, but also obestatin targets similar proteins and transcription factors as that of ghrelin (for example, FoxO family members) for salvaging skeletal muscle atrophy. Moreover, like ghrelin, obestatin also works by inducing the transcription of Pax7 which is required for muscle stem cell mobilisation. Hence, there are quite some evidences which points to the fact that obestatin can be purposed as a peptide intervention to prevent skeletal muscle wasting and induce myogenesis. This review elaborates these aspects of obestatin which can be further exploited and addressed to bring obestatin as a clinical intervention towards preventing skeletal muscle atrophy and sarcopenia.
Collapse
Affiliation(s)
- Akash Mitra
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Samanwita Mandal
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, Karnataka, 575018, India.
| |
Collapse
|
2
|
Haghshenas H, Molayem M, Shafiei Jahromi N, Kargar Jahromi H, Dehghani M, Ebrahimi B, Moazeni R, Rezaeian S, Shaterian N, Daniali S. Investigating the Preventive Effects of Oral Consumption of Dactylorhiza Maculate (Salep) Hydro-alcoholic Extract on Appetite and Body Weight in Male Rats. ARCHIVES OF RAZI INSTITUTE 2024; 79:418-425. [PMID: 39463707 PMCID: PMC11512169 DOI: 10.32592/ari.2024.79.2.418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 11/19/2023] [Indexed: 10/29/2024]
Abstract
Obesity is the result of positive energy balance in which various hormones and neurotransmitters are involved. Using Dietary supplements is a common and popular method to lose weight. Medicinal plants with specific effects on metabolizing enzymes, blocking adipogenesis, and improving energy metabolism can be a suitable alternative to these supplements. In this study, the role of hydro-alcoholic extract of Dactylorhiza maculate (Salep) plant on obesity and its related hormones and antioxidants was investigated. Forty male Wistar rats were divided into five groups: Control, Sham, and Salep extract (three doses): 80, 160, and 320 mg/kg. The extract was fed by gavage for 29 days. After the 29th day, blood and tissue samples were taken. Rats' ELISA kits were used to measure adiponectin, obestatin, resistin, orexin-A, insulin, epinephrine, Agouti Related Neuropeptide (AgRP), omentin, chemerin, amylin, neuropeptide-Y (NPY), and ghrelin. In addition, we measured leptin, cholecystokinin (CCK), antioxidants, and lipid profile factors. Evaluation of weight changes showed that Salep extract helped the animals to lose weight significantly in the 160 and 320 mg/kg Salep groups. Leptin, adiponectin, AgRP, obestatin, CCK, chemerin, adiponectin, and total antioxidants displayed a significant increase compared to the control group. In contrast, ghrelin, omentin, resistin, NPY, amylin, orexin-A, epinephrine, and Malondialdehyde (MDA) decreased in the Salep groups. The lipid profile was also affected by the extract. These findings suggest that the Salep extract prevents appetite, reduces ghrelin, and affects digestive factors; the Salep extract can change the secretory factors of adipose tissue and lipid profile and ultimately help to lose weight.
Collapse
Affiliation(s)
- H Haghshenas
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - M Molayem
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - N Shafiei Jahromi
- Department of nursing, Firoozababd Science and Research Branch, Islamic Azad University, Firoozababd, Iran
| | - H Kargar Jahromi
- Research center for non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - M Dehghani
- Research center for non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - B Ebrahimi
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - R Moazeni
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - S Rezaeian
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| | - N Shaterian
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
- Shiraz Geriatric Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of nursing, Firoozababd Science and Research Branch, Islamic Azad University, Firoozababd, Iran
- Research center for non-Communicable Disease, Jahrom University of Medical Sciences, Jahrom, Iran
| | - S Daniali
- Student Research Committee, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
3
|
Merabet N, Ramoz N, Boulmaiz A, Bourefis A, Benabdelkrim M, Djeffal O, Moyse E, Tolle V, Berredjem H. SNPs-Panel Polymorphism Variations in GHRL and GHSR Genes Are Not Associated with Prostate Cancer. Biomedicines 2023; 11:3276. [PMID: 38137497 PMCID: PMC10741232 DOI: 10.3390/biomedicines11123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) is a major public health problem worldwide. Recent studies have suggested that ghrelin and its receptor could be involved in the susceptibility to several cancers such as PCa, leading to their use as an important predictive way for the clinical progression and prognosis of cancer. However, conflicting results of single nucleotide polymorphisms (SNPs) with ghrelin (GHRL) and its receptor (GHSR) genes were demonstrated in different studies. Thus, the present case-control study was undertaken to investigate the association of GHRL and GHSR polymorphisms with the susceptibility to sporadic PCa. A cohort of 120 PCa patients and 95 healthy subjects were enrolled in this study. Genotyping of six SNPs was performed: three tag SNPs in GHRL (rs696217, rs4684677, rs3491141) and three tag SNPs in the GHSR (rs2922126, rs572169, rs2948694) using TaqMan. The allele and genotype distribution, as well as haplotypes frequencies and linked disequilibrium (LD), were established. Multifactor dimensionality reduction (MDR) analysis was used to study gene-gene interactions between the six SNPs. Our results showed no significant association of the target polymorphisms with PCa (p > 0.05). Nevertheless, SNPs are often just markers that help identify or delimit specific genomic regions that may harbour functional variants rather than the variants causing the disease. Furthermore, we found that one GHSR rs2922126, namely the TT genotype, was significantly more frequent in PCa patients than in controls (p = 0.040). These data suggest that this genotype could be a PCa susceptibility genotype. MDR analyses revealed that the rs2922126 and rs572169 combination was the best model, with 81.08% accuracy (p = 0.0001) for predicting susceptibility to PCa. The results also showed a precision of 98.1% (p < 0.0001) and a PR-AUC of 1.00. Our findings provide new insights into the influence of GHRL and GHSR polymorphisms and significant evidence for gene-gene interactions in PCa susceptibility, and they may guide clinical decision-making to prevent overtreatment and enhance patients' quality of life.
Collapse
Affiliation(s)
- Nesrine Merabet
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
- Unit 85 PRC (Physiology of Reproduction and Behavior), Centre INRAe of Tours, University of Tours, 37380 Nouzilly, France;
| | - Nicolas Ramoz
- University Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), 75014 Paris, France; (N.R.); (V.T.)
| | - Amel Boulmaiz
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| | - Asma Bourefis
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| | - Maroua Benabdelkrim
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| | - Omar Djeffal
- Private Medical Uro-Chirurgical Cabinet, Cité SafSaf, BatR02 n°S01, Annaba 23000, Algeria;
| | - Emmanuel Moyse
- Unit 85 PRC (Physiology of Reproduction and Behavior), Centre INRAe of Tours, University of Tours, 37380 Nouzilly, France;
| | - Virginie Tolle
- University Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris (IPNP), 75014 Paris, France; (N.R.); (V.T.)
| | - Hajira Berredjem
- Laboratory of Applied Biochemistry and Microbiology, Department of Biochemistry, Faculty of Sciences, Badji Mokhtar University, Annaba 23000, Algeria; (A.B.); (A.B.); (M.B.)
| |
Collapse
|
4
|
Colak DK, Coskun Yazici ZM, Bolkent S. Chronic administration of delta9-tetrahydrocannabinol protects hyperinsulinemic gastric tissue in rats. Cell Biochem Funct 2023; 41:1543-1551. [PMID: 38032085 DOI: 10.1002/cbf.3894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023]
Abstract
Hyperinsulinemia (HI) can result from some reasons such as an increase in basal/fasting circulating insulin and/or potentiation of postprandial insulin production. Diabetes mellitus (DM) is indirectly related to HI since it both causes and results from insulin resistance. Understanding the causes of HI and treating this is crucial for preventing DM. Previous research has shown that delta9-tetrahydrocannabinol (THC) has medicinal benefits. In light of this, the relationship between THC and oxidative stress, DNA repair mechanism, apoptosis, and its regulatory impact on appetite hormones in the gastric tissue of hyperinsulinemic rats has been investigated for the first time. Male rats (Spraque-Dawley, total = 32) were used, and they were randomly divided into the following groups (n = 8 in each group): control (CTRL), HI, THC administered control (THC, 1.5 mg/kg/day, during 4 weeks), and THC administered HI (HI + THC) groups. The number of poly (ADP-ribose) polymerase-1 and proliferating cell nuclear antigen (PCNA) and caspase-3 immunopositive cells in the HI group was significantly reduced compared to the CTRL group. The number of PCNA and caspase-9 immunopositive cells was significantly increased in the HI + THC group compared to the HI group. Obestatin immunopositive cell numbers in the HI + THC group were higher than in the HI and CTRL groups. The results show that THC administration may affect the regulation of appetite hormones and regeneration in the fundus of rats with HI. Glutathione (GSH) levels were higher in the HI + THC group than in the HI group. Both immunohistochemical and biochemical analyses revealed that THC promotes regeneration and regulates appetite hormones in hyperinsulinemic gastric tissues.
Collapse
Affiliation(s)
- Dilara Kamer Colak
- Department of Medical Biology, Faculty of Cerrahpaşa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Zeynep Mine Coskun Yazici
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Demiroglu Bilim University, Istanbul, Turkey
| | - Sema Bolkent
- Department of Medical Biology, Faculty of Cerrahpaşa Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| |
Collapse
|
5
|
Hebbar P, Nizam R, John SE, Antony D, Dashti M, Channanath A, Shaltout A, Al-Khandari H, Koistinen HA, Tuomilehto J, Alsmadi O, Thanaraj TA, Al-Mulla F. Linkage analysis using whole exome sequencing data implicates SLC17A1, SLC17A3, TATDN2 and TMEM131L in type 1 diabetes in Kuwaiti families. Sci Rep 2023; 13:14978. [PMID: 37696853 PMCID: PMC10495342 DOI: 10.1038/s41598-023-42255-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/07/2023] [Indexed: 09/13/2023] Open
Abstract
Type 1 diabetes (T1D) is characterized by the progressive destruction of pancreatic β-cells, leading to insulin deficiency and lifelong dependency on exogenous insulin. Higher estimates of heritability rates in monozygotic twins, followed by dizygotic twins and sib-pairs, indicate the role of genetics in the pathogenesis of T1D. The incidence and prevalence of T1D are alarmingly high in Kuwait. Consanguineous marriages account for 50-70% of all marriages in Kuwait, leading to an excessive burden of recessive allele enrichment and clustering of familial disorders. Thus, genetic studies from this Arab region are expected to lead to the identification of novel gene loci for T1D. In this study, we performed linkage analyses to identify the recurrent genetic variants segregating in high-risk Kuwaiti families with T1D. We studied 18 unrelated Kuwaiti native T1D families using whole exome sequencing data from 86 individuals, of whom 37 were diagnosed with T1D. The study identified three potential loci with a LOD score of ≥ 3, spanning across four candidate genes, namely SLC17A1 (rs1165196:pT269I), SLC17A3 (rs942379: p.S370S), TATDN2 (rs394558:p.V256I), and TMEM131L (rs6848033:p.R190R). Upon examination of missense variants from these genes in the familial T1D dataset, we observed a significantly increased enrichment of the genotype homozygous for the minor allele at SLC17A3 rs56027330_p.G279R accounting for 16.2% in affected children from 6 unrelated Kuwaiti T1D families compared to 1000 genomes Phase 3 data (0.9%). Data from the NephQTL database revealed that the rs1165196, rs942379, rs394558, and rs56027330 SNPs exhibited genotype-based differential expression in either glomerular or tubular tissues. Data from the GTEx database revealed rs942379 and rs394558 as QTL variants altering the expression of TRIM38 and IRAK2 respectively. Global genome-wide association studies indicated that SLC17A1 rs1165196 and other variants from SLC17A3 are associated with uric acid concentrations and gout. Further evidence from the T1D Knowledge portal supported the role of shortlisted variants in T1D pathogenesis and urate metabolism. Our study suggests the involvement of SLC17A1, SLC17A3, TATDN2, and TMEM131L genes in familial T1D in Kuwait. An enrichment selection of genotype homozygous for the minor allele is observed at SLC17A3 rs56027330_p.G279R variant in affected members of Kuwaiti T1D families. Future studies may focus on replicating the findings in a larger T1D cohort and delineate the mechanistic details of the impact of these novel candidate genes on the pathophysiology of T1D.
Collapse
Affiliation(s)
- Prashantha Hebbar
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Rasheeba Nizam
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Sumi Elsa John
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Dinu Antony
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Mohammad Dashti
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Arshad Channanath
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait
| | - Azza Shaltout
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
| | - Hessa Al-Khandari
- Department of Population Health, Dasman Diabetes Institute, Kuwait City, Kuwait
- Department of Pediatrics, Farwaniya Hospital, Ministry of Health, Kuwait City, Kuwait
| | - Heikki A Koistinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Jaakko Tuomilehto
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
- Diabetes Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | | | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, 15462, Kuwait City, Kuwait.
| |
Collapse
|
6
|
Sirotkin AV, Tarko A, Mlynček M, Harrath AH. Ghrelin and obestatin can promote human ovarian granulosa cell functions and FSH effects. Reprod Biol 2023; 23:100795. [PMID: 37586298 DOI: 10.1016/j.repbio.2023.100795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/27/2023] [Accepted: 07/29/2023] [Indexed: 08/18/2023]
Abstract
The aim of the present in-vitro experiments was to examine the direct influence of ghrelin and obestatin on viability, proliferation and progesterone release by human ovarian granulosa cells and their response to FSH administration. Human granulosa cells were cultured in presence of ghrelin or obestatin (both at 0, 1, 10 or 100 ng/ml) alone or in the presence of FSH (10 ng/ml). Cell viability, accumulation of proliferation markers PCNA and cyclin B1 and release of progesterone were analyzed by Trypan blue extrusion test, quantitative immunocytochemistry and ELISA. Ghrelin, obestatin and FSH up-regulated all the measured ovarian cell parameters. Moreover, both ghrelin and obestatin promoted all the stimulatory effects of FSH. The obtained results demonstrate the direct stimulatory action of ghrelin, obestatin and FSH on basic ovarian cell functions, as well as the ability of metabolic hormones to improve FSH action on human ovarian cells.
Collapse
Affiliation(s)
- Alexander V Sirotkin
- Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia.
| | - Adam Tarko
- Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Miloš Mlynček
- Constantine The Philosopher University in Nitra, Tr. A. Hlinku 1, 949 74 Nitra, Slovakia
| | - Abdel Halim Harrath
- King Saud University, College of Science, Department of Zoology, Riyadh 11451, Saudi Arabia
| |
Collapse
|
7
|
Luo WY, Gao L, Zhao DD, Zhang L, Gao B, Lei G, Dong GT, Wei JP. Yunvjian Improves Glucose and Insulin Function in Diabetic Rats by Regulating Gastric Emptying Function. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:8551406. [PMID: 36691597 PMCID: PMC9867596 DOI: 10.1155/2023/8551406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/17/2022] [Accepted: 12/05/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Diet acts on the human body through digestion in the stomach and absorption in the intestines. Thus, the emptying of the stomach should be the focus of the research mechanism of the combined medicine and food treatment of diabetes. The emptying function of the stomach and the secretion of related hormones may be the key points of traditional Chinese medicine. In the clinic, Yunvjian is a famous traditional Chinese formula for preventing and curing diabetes. However, the pharmacological action and mechanism of Yunvjian are also need to be probe. OBJECTIVE To assess the effect of Yunvjian on glucose, insulin level and gastric emptying function and related hormones on high-fat diet combined with STZ-induced diabetic rats. METHODS High-fat diet combined with STZ was used to construct type 2 diabetes mellitus (T2DM) rats model and received a 4-week Yunvjian administration. The animals were divided into 6 groups, respectively, as the Control group, the DM group, the DM + Acarbose group, the DM + YNH group, and the DM + YNL group. Radionuclide single-photon emission computed tomography (SPECT) technology was used to observe the gastric emptying rate and half-empty time; blood was took to test fasting insulin, and then the insulin resistance index (HOMA-IR) was calculated; HE staining was performed to detect islets and gastric antrum, immunohistochemical staining was performed to detect the number and morphology of pancreatic β cells and gastric antrum Cajal cells, and the average optical density was calculated; the expression of ghrelin hormone in gastric antrum and serum was detected by ELISA and immunofluorescence; the expression of GHRS mRNA in gastric antrum was detected by RT-PCR method. RESULTS Yunvjian could significantly improve the glucose level and insulin function of rats. Compared with the DM group, Yunvjian was beneficial to low fasting blood glucose (FBG) (P < 0.01), increased glucose tolerance, and improved islet function at the same time (P < 0.05). At the same time, compared with the DM group (25.02 ± 0.05, 44 ± 12.33), the emptying rate of the DM + YNH group was significantly faster (64.98 ± 0.12), and the half row time was shortened (26 ± 8.29, P < 0.05). The gastric ghrelin levels in each group of Yunvjian increased with different degrees compared with the DM group (616.2 ± 26.23), especially in the DM + YNH group (863.51 ± 23.76, P < 0.01). Correspondingly, the expression of gastric GHSR mRNA in the DM + YNH and DM + YNL groups increased significantly compared with the DM group (P < 0.01). CONCLUSIONS Yunvjian can effectively control glucose and improve islet function, which may be closely related to its influence on gastric emptying function and related hormone secretion regulation.
Collapse
Affiliation(s)
- Wan-Yu Luo
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Department of Traditional Chinese Medicine, Shandong Traditional Chinese Medicine University, Shandong, Jinan, China
| | - Lin Gao
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Dan-Dan Zhao
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Lin Zhang
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Gao
- Department of Nuclear Medicine, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang Lei
- Department of Nuclear Medicine, Guang'anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Guang-Tong Dong
- Department of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jun-Ping Wei
- Department of Endocrinology, Guang' anmen Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
8
|
Noh JY, Herrera M, Patil BS, Tan XD, Wright GA, Sun Y. The expression and function of growth hormone secretagogue receptor in immune cells: A current perspective. Exp Biol Med (Maywood) 2022; 247:2184-2191. [PMID: 36151745 PMCID: PMC9899990 DOI: 10.1177/15353702221121635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The orexigenic hormone ghrelin and its receptor, growth hormone secretagogue receptor (GHS-R), have been extensively studied in the last two decades, revealing that ghrelin signaling has important implications in health and disease. Metabolic diseases, such as obesity and diabetes, are often accompanied by low-grade chronic inflammation, that has been coined as "meta-inflammation." Immune cells are key cellular mediators of meta-inflammation, controlling both initiation and resolution of inflammation. Immune cells exhibit dynamic changes in cellular characteristics and functional output in response to the stimuli/insults from their surrounding microenvironment. Emerging evidence shows that ghrelin has an important effect on inflammation, in addition to its well-known effects on metabolism. However, the cellular/molecular mechanism of ghrelin signaling in immunity is largely unknown because the knowledge in regard to the expression and function of GHS-R in immune cells is currently sparse. In this review, we have accumulated the recent findings related to the expression and functions of GHS-R in various immune cells under different physiological and pathological states. This review aims to inspire further investigation of the immunological roles of ghrelin signaling and advance the therapeutic applications of ghrelin signaling in meta-inflammation.
Collapse
Affiliation(s)
- Ji Yeon Noh
- Department of Nutrition, Texas A&M
University, College Station, TX 77843, USA
| | - Matthew Herrera
- Department of Nutrition, Texas A&M
University, College Station, TX 77843, USA
| | - Bhimanagouda S Patil
- Vegetable and Fruit Improvement Center,
Department of Horticultural Sciences, Texas A&M University, College Station, TX
77843, USA
| | - Xiao-Di Tan
- Department of Pediatrics, Feinberg
School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Gus A Wright
- Department of Veterinary Pathobiology,
Texas A&M University, College Station, TX 77843, USA
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M
University, College Station, TX 77843, USA
- USDA/ARS Children’s Nutrition Research
Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030,
USA
| |
Collapse
|
9
|
Molecular Mechanisms and Health Benefits of Ghrelin: A Narrative Review. Nutrients 2022; 14:nu14194191. [PMID: 36235843 PMCID: PMC9572668 DOI: 10.3390/nu14194191] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/26/2022] [Accepted: 10/05/2022] [Indexed: 11/24/2022] Open
Abstract
Ghrelin, an endogenous brain-gut peptide, is secreted in large quantities, mainly from the stomach, in humans and rodents. It can perform the biological function of activating the growth hormone secretagogue receptor (GHSR). Since its discovery in 1999, ample research has focused on promoting its effects on the human appetite and pleasure-reward eating. Extensive, in-depth studies have shown that ghrelin is widely secreted and distributed in tissues. Its role in neurohumoral regulation, such as metabolic homeostasis, inflammation, cardiovascular regulation, anxiety and depression, and advanced cancer cachexia, has attracted increasing attention. However, the effects and regulatory mechanisms of ghrelin on obesity, gastrointestinal (GI) inflammation, cardiovascular disease, stress regulation, cachexia treatment, and the prognosis of advanced cancer have not been fully summarized. This review summarizes ghrelin's numerous effects in participating in a variety of biochemical pathways and the clinical significance of ghrelin in the regulation of the homeostasis of organisms. In addition, potential mechanisms are also introduced.
Collapse
|
10
|
Kasprzak A, Adamek A. Role of the Ghrelin System in Colitis and Hepatitis as Risk Factors for Inflammatory-Related Cancers. Int J Mol Sci 2022; 23:ijms231911188. [PMID: 36232490 PMCID: PMC9569806 DOI: 10.3390/ijms231911188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 02/05/2023] Open
Abstract
It is not known exactly what leads to the development of colorectal cancer (CRC) and hepatocellular carcinoma (HCC), but there are specific risk factors that increase the probability of their occurrence. The unclear pathogenesis, too-late diagnosis, poor prognosis as a result of high recurrence and metastasis rates, and repeatedly ineffective therapy of both cancers continue to challenge both basic science and practical medicine. The ghrelin system, which is comprised of ghrelin and alternative peptides (e.g., obestatin), growth hormone secretagogue receptors (GHS-Rs), and ghrelin-O-acyl-transferase (GOAT), plays an important role in the physiology and pathology of the gastrointestinal (GI) tract. It promotes various physiological effects, including energy metabolism and amelioration of inflammation. The ghrelin system plays a role in the pathogenesis of inflammatory bowel diseases (IBDs), which are well known risk factors for the development of CRC, as well as inflammatory liver diseases which can trigger the development of HCC. Colitis-associated cancer serves as a prototype of inflammation-associated cancers. Little is known about the role of the ghrelin system in the mechanisms of transformation of chronic inflammation to low- and high-grade dysplasia, and, finally, to CRC. HCC is also associated with chronic inflammation and fibrosis arising from different etiologies, including alcoholic and nonalcoholic fatty liver diseases (NAFLD), and/or hepatitis B (HBV) and hepatitis C virus (HCV) infections. However, the exact role of ghrelin in the progression of the chronic inflammatory lesions into HCC is still unknown. The aim of this review is to summarize findings on the role of the ghrelin system in inflammatory bowel and liver diseases in order to better understand the impact of this system on the development of inflammatory-related cancers, namely CRC and HCC.
Collapse
Affiliation(s)
- Aldona Kasprzak
- Department of Histology and Embryology, University of Medical Sciences, Święcicki Street 6, 60-781 Poznań, Poland
- Correspondence: ; Tel.: +48-61-8546441; Fax: +48-61-8546440
| | - Agnieszka Adamek
- Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, University of Medical Sciences, Szwajcarska Street 3, 61-285 Poznań, Poland
| |
Collapse
|